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Abstract. It is well known that the generalized (or quotient) singular values of a matrix pair (𝐴, 𝐶) can be obtained from
the generalized eigenvalues of a matrix pencil consisting of two augmented matrices. The downside of this reformulation
is that one of the augmented matrices requires a cross products of the form 𝐶∗𝐶, which may affect the accuracy of the
computed quotient singular values if 𝐶 has a large condition number. A similar statement holds for the restricted singular
values of a matrix triplet (𝐴, 𝐵, 𝐶) and the additional cross product 𝐵𝐵∗. This article shows that we can reformulate the
quotient and restricted singular value problems as generalized eigenvalue problems without having to use any cross
product or any other matrix-matrix product. Numerical experiments show that there indeed exist situations in which the
new reformulation leads to more accurate results than the well-known reformulation.

Key words. generalized eigenvalue problem, augmented matrix, generalized singular value decomposition, GSVD,
quotient singular value decomposition, QSVD, restricted singular value decomposition, RSVD.

AMS subject classification. 65F15; 15A18

1 Introduction. Suppose that 𝐴 ∈ ℂ𝑝×𝑞, then it is well known that the (ordinary) singular values
of 𝐴 can be obtained from the eigenvalues of either of the products

(1) A = 𝐴∗𝐴 or A = 𝐴𝐴∗,

or from the augmented matrix

(2) A =

[︄
0 𝐴

𝐴∗ 0

]︄
.

Likewise, if 𝐶 ∈ ℂ𝑛×𝑞 is a second matrix, then the generalized singular values (precise definitions of
the various singular value concepts follow later), also called the quotient singular values [4], of the
matrix pair (𝐴, 𝐶) can be obtained either from the generalized eigenvalues of the pencil

(3) A − _B = 𝐴∗𝐴 − _𝐶∗𝐶

or from the augmented pencil

(4) A − _B =

[︄
0 𝐴

𝐴∗ 0

]︄
− _

[︄
𝐼 0
0 𝐶∗𝐶

]︄
.

Furthermore, if 𝐵 ∈ ℂ𝑝×𝑚 is a third matrix, then the restricted singular values of the triplet (𝐴, 𝐵, 𝐶),
can be obtained from the pencil

(5) A − _B =

[︄
0 𝐴

𝐴∗ 0

]︄
− _

[︄
𝐵𝐵∗ 0
0 𝐶∗𝐶

]︄
.
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†Faculty of Mathematics and Natural Sciences, Bergische Universität Wuppertal, ianzwaan.com.

1



Except for (2), all the above (generalized) eigenvalue problems require cross products of the form
𝐴∗𝐴, 𝐵𝐵∗, or 𝐶∗𝐶. Textbooks by, for example, Stewart [20, Sec. 3.3.2], Higham [9, Sec. 20.4], and
Golub and Van Loan [8, Sec. 8.6.3] dictate that these types of products are undesirable for poorly
conditioned matrices, because condition numbers are squared and accuracy may be lost. This loss
of accuracy has also been investigated, for example, by Jia [14] for the SVD, and by and Huang and
Jia [13] for the GSVD.

Numerical methods exist, for large and sparse matrices in particular, purposefully designed
to avoid explicit use of the unwanted cross products. Examples for the singular value problem
include Golub–Kahan–Lanczos bidiagonalization; see, e.g., Demmel [6, Sec. 6.3.3]; and JDSVD by
Hochstenbach [10]. Examples for the quotient singular value problem include a bidiagonalization
method by Zha [23], JDGSVD by Hochstenbach [11], generalized Krylov methods by Hochstenbach,
Reichel, and Yu [12] and Reichel and Yu [18, 19], and a Generalized–Davidson based projection
method [25].

The purpose of this article is to show that we can reformulate the ordinary, quotient, and
restricted singular value problems as a matrix pencil that consists of two augmented matrices,
neither of which require any cross product, or any other matrix-matrix product.

To see precisely how the eigenvalues and eigenvectors of the matrix pencils relate to the singular
values and vectors, we can use the Kronecker Canonical Form (KCF). The KCF, detailed in Section 2,
is the generalization of the Jordan form of a matrix to matrix pencils, and fully characterises
the generalized eigenstructure of pencils. The next step is to reformulate the ordinary singular
value decomposition (OSVD) in Section 3, and to analyze the corresponding KCF. This particular
reformulation is purely for exposition, since the augmented matrix (2) is already free of cross
products. That is, the new reformulation of the OSVD is the simplest case we can consider and the
easiest to verify by hand, but already uses the same general approach we use for the other two
singular value problems. In the next two sections, Section 4 and 5, we discuss the reformulation of
the quotient singular value decomposition (QSVD) and the restricted singular value decomposition
(RSVD). The former is better known and more widely used in practice, while the latter is more
general. The generality of the RSVD makes it tedious to describe in full detail, and also tedious to
get the KCF of its corresponding cross product–free pencil. Still, its treatment is essentially identical
to the simpler cases of the OSVD and QSVD. The numerical experiments that follow in Section 7
show that, for some matrix pairs and triplets, we can compute the singular values more accurately
from the new cross product–free pencils than from the typical augmented pencils. The new pencils
are not without their own downsides, such as an increased problem size and the presence of Jordan
blocks, which we further discuss in the conclusion in Section 8.

Throughout this text, 𝐼 denotes an identity matrix of appropriate size; 𝑀𝑇 and 𝑀∗ denote
the transpose and Hermitian transpose, respectively, of a matrix 𝑀; and ⊗ denotes the Kronecker
product. Furthermore, for some permutation 𝜋 of length 𝑘, the corresponding permutation matrix
is given by

Π =

[︂
𝑒𝜋(1) 𝑒𝜋(2) . . . 𝑒𝜋(𝑘)

]︂
,

where the 𝑒 𝑗 are the 𝑗th canonical basis vectors of length 𝑘. The notation of permutations and
permutation matrices is extended to block matrices, and permute entire blocks of rows or columns
at once.

2 The Kronecker canonical form. Asmentioned before, the KCF is a generalization of the Jordan
form to matrix pencils, and its importance is that it fully describes the generalized eigenvalues and
generalized eigenspaces of a matrix pencil. This also means that two matrix pencils are equivalent
if-and-only-if they have the same KCF [7, Thm. 5], where the meaning of equivalence is as in the
following definition.
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Definition 1 (Gantmacher [7, Def. 1]). Two pencils of rectangular matrices A − _B and A1 − _B1
of the same dimensions 𝑘 × ℓ are called strictly equivalent if there exists nonsingular X and Y,
independent of _, such that Y∗(A − _B)X = A1 − _B1.

Now we are ready for the definition of the KCF, which is given by the following theorem.

Theorem 2 (Adapted from Kågström [15, Sec. 8.7.2] and Gantmacher [7, Ch. 2]). Let A,B ∈ ℂ𝑘×ℓ,
then there exists nonsingular matrices X ∈ ℂℓ×ℓ and Y ∈ ℂ𝑘×𝑘 such that Y∗(A − _B)X equals

diag(0𝛽0×𝛼0 , 𝐿𝛼1 , . . . , 𝐿𝛼𝑚
, 𝐿𝑇𝛽1 , . . . , 𝐿

𝑇
𝛽𝑛
, 𝑁𝛾1 , . . . , 𝑁𝛾𝑝 , 𝐽𝛿1 (Z1), . . . , 𝐽𝛿𝑞 (Z𝑞));

where the

𝐿𝛼 𝑗
=

⎡⎢⎢⎢⎢⎢⎢⎣
0 1

. . .
. . .

0 1

⎤⎥⎥⎥⎥⎥⎥⎦ − _

⎡⎢⎢⎢⎢⎢⎢⎣
1 0

. . .
. . .

1 0

⎤⎥⎥⎥⎥⎥⎥⎦
are 𝛼 𝑗 × (𝛼 𝑗 + 1) singular blocks of right (or column) minimal index 𝛼 𝑗, the

𝐿𝑇𝛽 𝑗
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

1 . . .

. . . 0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

0 . . .

. . . 1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
are (𝛽 𝑗 + 1) × 𝛽 𝑗 singular blocks of left (or row) minimal index 𝛽 𝑗, the

𝑁𝛾 𝑗
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0

. . .
. . .

. . . 0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1

. . .
. . .

. . . 1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
are 𝛾 𝑗 × 𝛾 𝑗 Jordan blocks corresponding to an infinite eigenvalues 𝛾 𝑗, and the

𝐽𝛿 𝑗
(Z 𝑗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Z 1

. . .
. . .

. . . 1
Z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0

. . .
. . .

. . . 0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
are 𝛿 𝑗 × 𝛿 𝑗 Jordan blocks corresponding to finite eigenvalues Z 𝑗 ∈ ℂ.

The meaning of minimal indices is not important for this paper, and an interested reader may
refer to the references for more information. Furthermore, the zero block 0𝛽0×𝛼0 corresponds to
𝛼0 blocks 𝐿0 and 𝛽0 blocks 𝐿𝑇0 by convention. We include it here explicitly for clarity, and because
in this paper we have no KCF with any other 𝐿𝛼 and 𝐿𝑇

𝛽
blocks. Moreover, in this paper all Jordan

blocks corresponding to finite nonzero eigenvalues Z 𝑗 will be such that 𝐽𝛿 𝑗
(Z 𝑗) = Z 𝑗 − _; that is,

𝛿 𝑗 = 1 whenever Z 𝑗 ≠ 0.
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3 The ordinary singular value decomposition. The augmented matrix (2) does not contain
any cross products. Still, we can take the cross product–free matrix pencil for the QSVD and consider
the OSVD as a special case. The main reason for us to do so, is to show how we can determine the
corresponding KCF for the simplest case that we can consider. That is, this section sets the stage
and the reformulations for the QSVD and RSVD and their proofs in the sections to come, follow
from the same general idea.

Let us start by recalling the definition of the ordinary singular value decomposition with the
following theorem (see, e.g., Golub and Van Loan [8]).

Theorem 3 (Ordinary singular value decomposition (OSVD)). Let 𝐴 ∈ ℂ𝑝×𝑞; then there exist unitary
matrices 𝑈 ∈ ℂ𝑝×𝑝 and 𝑉 ∈ ℂ𝑞×𝑞 such that

Σ = 𝑈∗𝐴𝑉 =

[︃ 𝑞1 𝑞2

𝑝1 𝐷𝜎 0
𝑝2 0 0

]︃
,

where 𝑝 = 𝑝1 + 𝑝2, 𝑞 = 𝑞1 + 𝑞2, and 𝑝1 = 𝑞1. Furthermore, 𝐷𝜎 = diag(𝜎1, . . . , 𝜎𝑝1) with 𝜎 𝑗 > 0 for
all 𝑗 = 1, 2, . . . , 𝑝1.

Next, let us consider the eigenvalue decomposition of a 4 × 4 pencil that we can consider as the
cross product–free pencil for the 1 × 1 matrix 𝜎 ≥ 0.

Lemma 4. Suppose 𝜎 is a positive real number, and consider the pencil

(6) A − _B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝜎 0 0
𝜎 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then the unitary matrices

X =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −1 −𝑖 𝑖

1 −1 𝑖 −𝑖
1 1 1 1
1 1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Y =

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1 1
1 1 −1 −1
1 −1 −𝑖 𝑖

1 −1 𝑖 −𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
are such that

Y∗(A − _B)X = diag(
√
𝜎,−

√
𝜎, 𝑖

√
𝜎,−𝑖

√
𝜎) − _𝐼.

Proof. The proof is by direct verification. □

With the above definition and lemma, we can state and prove the following theorem and
corollary.

Theorem 5. Let 𝐴 and its corresponding SVD be as in Theorem 3. Then the KCF of the pencil

(7) A − _B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝐴 0 0
𝐴∗ 0 0 0
0 0 𝐼 0
0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 𝐼 0
0 0 0 𝐼

𝐼 0 0 0
0 𝐼 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
consists of the following blocks.
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1. A series of 𝑝2 + 𝑞2 blocks 𝐽2(0).

2. The blocks 𝐽1(
√
𝜎1), . . . , 𝐽1(

√
𝜎𝑝1), 𝐽1(−

√
𝜎1), . . . , 𝐽1(−

√
𝜎𝑝1), 𝐽1(𝑖

√
𝜎1), . . . , 𝐽1(𝑖

√
𝜎𝑝1),

𝐽1(−𝑖
√
𝜎1), . . . , 𝐽1(−𝑖

√
𝜎𝑝1), where 𝜎1, . . . , 𝜎𝑝1 are the nonzero singular values of 𝐴.

Proof. Let A0 − _B0 = A − _B, and define the transformations X0 = Y0 = diag(𝑈,𝑉,𝑈, 𝑉). Then
the pencil A1 − _B1 = Y∗

0 (A0 − _B0)X0 is a square 8 × 8 block matrix of dimension

𝑝1 + 𝑝2⏞ˉ̄⏟⏟ˉ̄⏞
𝑝

+ 𝑞1 + 𝑞2⏞ˉ⏟⏟ˉ⏞
𝑞

+ 𝑝1 + 𝑝2⏞ˉ̄⏟⏟ˉ̄⏞
𝑝

+ 𝑞1 + 𝑞2⏞ˉ⏟⏟ˉ⏞
𝑞

.

Now let X1 and Y1 be the permutation matrices corresponding to the permutations

𝜋X = (2, 6, 4, 8, 1, 3, 5, 7) and 𝜋Y = (6, 2, 8, 4, 1, 3, 5, 7),

respectively. Then the pencil A2 − _B2 = Y∗
1 (A1 − _B1)X1 is block diagonal, and has the following

blocks along its diagonal.

1. The (𝑝2 + 𝑝2 + 𝑞2 + 𝑞2) × (𝑝2 + 𝑝2 + 𝑞2 + 𝑞2) block⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝐼 0 0
0 0 0 0
0 0 0 𝐼

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐼 0 0 0
0 𝐼 0 0
0 0 𝐼 0
0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[︄
𝐽2(0) ⊗ 𝐼

𝐽2(0) ⊗ 𝐼

]︄
,

which yields 𝑝2 + 𝑞2 blocks 𝐽2(0) in the KCF of (7) after suitable permutations.

2. The (𝑝1 + 𝑞1 + 𝑝1 + 𝑞1) × (𝑝1 + 𝑞1 + 𝑝1 + 𝑞1) block⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝐷𝜎 0 0
𝐷𝜎 0 0 0
0 0 𝐼 0
0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 𝐼 0
0 0 0 𝐼

𝐼 0 0 0
0 𝐼 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which reduces to a diagonal matrix with the Jordan “blocks” 𝐽1(±
√±𝜎 𝑗) after suitable permu-

tations and applying Lemma 4.

□

Corollary 6. The (right) eigenvectors belonging to the eigenvalues √𝜎 𝑗, −
√
𝜎 𝑗, 𝑖

√
𝜎 𝑗, and −𝑖

√
𝜎 𝑗 are⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢 𝑗

𝑣 𝑗
√
𝜎 𝑗𝑢 𝑗

√
𝜎 𝑗𝑣 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−𝑢 𝑗

−𝑣 𝑗
√
𝜎 𝑗𝑢 𝑗

√
𝜎 𝑗𝑣 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−𝑖𝑢 𝑗

𝑖𝑣 𝑗
√
𝜎 𝑗𝑢 𝑗

−√𝜎 𝑗𝑣 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑖𝑢 𝑗

−𝑖𝑣 𝑗
√
𝜎 𝑗𝑢 𝑗

−√𝜎 𝑗𝑣 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

respectively. Here 𝑢 𝑗 = 𝑈𝑒 𝑗 and 𝑣 𝑗 = 𝑉𝑒 𝑗.

As we will see in the next two sections, we can follow the same general approach with the
QSVD and the RSVD. That is, we start with the “obvious” transformation of the pencils, permute the
resulting block matrices, and invoke an analogue of Lemma 4.
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4 The quotient singular value decomposition. The QSVD can be used to solve, for example,
generalized eigenvalue problems of the form (3), generalized total least squares problems, general-
form Tikhonov regularization, least squares problems with equality constraints, etc.; see, e.g.,
Van Loan [21] and Bai [2] for more information. The QSVD is defined the theorem below and comes
from Paige and Saunders [17], but has the blocks of the partitioned matrices permuted to be closer
to a special case of the RSVD from Section 5.

Theorem 7 (Quotient singular value decomposition). Let 𝐴 ∈ ℂ𝑝×𝑞 and 𝐶 ∈ ℂ𝑛×𝑞; then there exist
a nonsingular matrix 𝑌 ∈ ℂ𝑞×𝑞 and unitary matrices 𝑈 ∈ ℂ𝑝×𝑝 and 𝑉 ∈ ℂ𝑛×𝑛 such that

𝑈∗𝐴𝑌 =

⎡⎢⎢⎢⎢⎣
𝑞1 𝑞2 𝑞3 𝑞4

𝑝1 0 0 𝐷𝛼 0
𝑝2 0 0 0 𝐼

𝑝3 0 0 0 0

⎤⎥⎥⎥⎥⎦ and 𝑉∗𝐶𝑌 =

⎡⎢⎢⎢⎢⎣
𝑞1 𝑞2 𝑞3 𝑞4

𝑛1 0 𝐼 0 0
𝑛2 0 0 𝐷𝛾 0
𝑛3 0 0 0 0

⎤⎥⎥⎥⎥⎦ ,
where 𝑛2 = 𝑝1 = 𝑞3, 𝑛1 = 𝑞2, and 𝑝2 = 𝑞4. Furthermore, 𝐷𝛼 = diag(𝛼1, . . . , 𝛼𝑝1) and 𝐷𝛾 =

diag(𝛾1, . . . , 𝛾𝑝1) are such that 𝛼 𝑗, 𝛾 𝑗 > 0 and 𝛼2
𝑗
+ 𝛾2

𝑗
= 1 for all 𝑗 = 1, 2, . . . , 𝑝1. These 𝑝1 = 𝑞3 pairs

(𝛼 𝑗, 𝛾 𝑗) together with 𝑞2 pairs (0, 1) and 𝑞4 pairs (1, 0) are called the nontrivial pairs. The remaining
𝑞1 pairs (0, 0) are called the trivial pairs. Each nontrivial pair (𝛼, 𝛾) corresponds to a quotient singular
value 𝜎 = 𝛼/𝛾, where the result is ∞ by convention if 𝛾 = 0.

As before, we first consider the one dimensional case and generalize Lemma 4 to the QSVD.

Lemma 8. Suppose 𝛼 and 𝛾 are positive real numbers and consider the pencil

A − _B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝛼 0 0
𝛼 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1 0
0 0 0 𝛾

1 0 0 0
0 𝛾 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then the nonsingular matrices

X = Y = 𝜎−1/4 diag(1, 𝛾−1,
√
𝜎,
√
𝜎),

where 𝜎 = 𝛼/𝛾, are such that Y∗(A − _B)X is a pencil of the form (6).

Proof. The proof is by direct verification. □

Using the above definition of the QSVD in Theorem 7, and the reduction in Lemma 8, we can
state and prove the following theorem and corollary.

Theorem 9. Let 𝐴, 𝐶, and their corresponding QSVD be as in Theorem 7. Then the KCF of the pencil

(8) A − B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝐴 0 0
𝐴∗ 0 0 0
0 0 𝐼 0
0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 𝐼 0
0 0 0 𝐶∗

𝐼 0 0 0
0 𝐶 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
consists of the following blocks.

1. A 𝑞1 × 𝑞1 zero block, which corresponds to quotient singular pairs of the form (0, 0).

2. A series of 𝑛3 blocks 𝑁1, which correspond to (1, 0) pairs.
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3. A series of 𝑝2 blocks 𝑁3, which correspond to (1, 0) pairs.

4. A series of 𝑝3 + 𝑞2 blocks 𝐽2(0), which correspond to (0, 1) pairs.

5. The blocks 𝐽1(
√
𝜎1), . . . , 𝐽1(

√
𝜎𝑝1), 𝐽1(−

√
𝜎1), . . . , 𝐽1(−

√
𝜎𝑝1), 𝐽1(𝑖

√
𝜎1), . . . , 𝐽1(𝑖

√
𝜎𝑝1),

𝐽1(−𝑖
√
𝜎1), . . . , 𝐽1(−𝑖

√
𝜎𝑝1), where 𝜎1, . . . , 𝜎𝑝1 are the finite and nonzero quotient singular

values of the matrix pair (𝐴, 𝐶).

Proof. Let A0 − _B0 = A − _B, and define the transformations X0 = Y0 = diag(𝑈, 𝑌,𝑈, 𝑉). Then
the pencil A1 − _B1 = Y∗

0 (A0 − _B0)X0 is a square 13 × 13 block matrix of dimension

𝑝1 + 𝑝2 + 𝑝3⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑝

+ 𝑞1 + 𝑞2 + 𝑞3 + 𝑞4⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑞

+ 𝑝1 + 𝑝2 + 𝑝3⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑝

+ 𝑛1 + 𝑛2 + 𝑛3⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑛

.

Now let X1 and Y1 be the permutation matrices corresponding to the permutations

𝜋X = (4, 13, 7, 9, 2, 3, 10, 5, 11, 1, 6, 8, 12),
𝜋Y = (4, 13, 2, 9, 7, 10, 3, 11, 5, 1, 6, 8, 12),

respectively. Then the pencil A2 − _B2 = Y∗
1 (A1 − _B1)X1 is block diagonal, and has the following

blocks along its diagonal.

1. A 𝑞1 × 𝑞1 block of zeros.

2. The 𝑛3 × 𝑛3 block 𝐼 − _ · 0 = 𝑁1 ⊗ 𝐼.

3. The (𝑝2 + 𝑝2 + 𝑞4) × (𝑞4 + 𝑝2 + 𝑝2) block⎡⎢⎢⎢⎢⎢⎣
𝐼 0 0
0 𝐼 0
0 0 𝐼

⎤⎥⎥⎥⎥⎥⎦ − _

⎡⎢⎢⎢⎢⎢⎣
0 𝐼 0
0 0 𝐼

0 0 0

⎤⎥⎥⎥⎥⎥⎦ = 𝑁3 ⊗ 𝐼,

where 𝑝2 = 𝑞4.

4. The (𝑝3 + 𝑝3 + 𝑞2 + 𝑛1) × (𝑝3 + 𝑝3 + 𝑛1 + 𝑞2) block⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝐼 0 0
0 0 0 0
0 0 0 𝐼

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐼 0 0 0
0 𝐼 0 0
0 0 𝐼 0
0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[︄
𝐽2(0) ⊗ 𝐼

𝐽2(0) ⊗ 𝐼

]︄
,

where 𝑛1 = 𝑞2, which yields 𝑝3 + 𝑞2 blocks 𝐽2(0) in the KCF of (8) after suitable permutations.

5. The (𝑝1 + 𝑞3 + 𝑝1 + 𝑛2) × (𝑝1 + 𝑞3 + 𝑝1 + 𝑛2) block⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝐷𝛼 0 0
𝐷𝛼 0 0 0
0 0 𝐼 0
0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 𝐼 0
0 0 0 𝐷𝛾

𝐼 0 0 0
0 𝐷𝛾 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝑛2 = 𝑝1 = 𝑞3, which reduces to a diagonal matrix with the Jordan “blocks” 𝐽1(±
√±𝜎 𝑗)

after suitable permutations and applying Lemma 8.
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□

Corollary 10. The eigenvectors belonging to the nonzero finite eigenvalues √𝜎 𝑗, −
√
𝜎 𝑗, 𝑖

√
𝜎 𝑗, and

−𝑖√𝜎 𝑗 are⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑢 𝑗

𝛾−1
𝑗
𝑦 𝑗

√
𝜎 𝑗𝑢 𝑗

√
𝜎 𝑗𝑣 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−𝑢 𝑗

−𝛾−1
𝑗
𝑦 𝑗

√
𝜎 𝑗𝑢 𝑗

√
𝜎 𝑗𝑣 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−𝑖𝑢 𝑗

𝑖𝛾−1
𝑗
𝑦 𝑗

√
𝜎 𝑗𝑢 𝑗

−√𝜎 𝑗𝑣 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑖𝑢 𝑗

−𝑖𝛾−1
𝑗
𝑦 𝑗

√
𝜎 𝑗𝑢 𝑗

−√𝜎 𝑗𝑣 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

respectively. Here 𝑢 𝑗 = 𝑈𝑒 𝑗, 𝑣 𝑗 = 𝑉𝑒 𝑗, and 𝑦 𝑗 = 𝑌𝑒𝑞1+ 𝑗.

Compared to the OSVD, the KCF for (8) has three extra blocks, nameley the first three blocks in
the list of Theorem 9. The first of these blocks is associated with the singularity of the pencil, while
the second and third blocks are associated with infinite eigenvalues/singular values.

5 The restricted singular value decomposition. The RSVD is useful for, for example, analyz-
ing structured rank perturbations, computing low-rank approximations of partitioned matrices,
minimization or maximization of the bilinear form 𝑥∗𝐴𝑦 under the constraints ∥𝐵∗𝑥∥, ∥𝐶𝑦∥ ≠ 0,
solving matrix equations of the form 𝐵𝑋𝐶 = 𝐴, constrained total least squares with exact rows and
columns, and generalized Gauss–Markov models with constraints. See, e.g., Zha [22] and De Moor
and Golub [5] for more information. The RSVD is defined by the theorem below and comes from
[24], but was adapted from the preceeding two references. The full definition of the RSVD is quite
tedious, but we can follow the same general approach as in the previous two sections.

Theorem 11 (The restricted singular value decomposition). Let 𝐴 ∈ ℂ𝑝×𝑞, 𝐵 ∈ ℂ𝑝×𝑚, and 𝐶 ∈
ℂ𝑛×𝑞, and define 𝑟𝐴 = rank 𝐴, 𝑟𝐵 = rank 𝐵, 𝑟𝐶 = rank 𝐶, 𝑟𝐴𝐵 = rank

[︁
𝐴 𝐵

]︁
, 𝑟𝐴𝐶 = rank

[︁
𝐴; 𝐶

]︁
,

and 𝑟𝐴𝐵𝐶 = rank
[︁
𝐴 𝐵
𝐶 0

]︁
. Then the triplet of matrices (𝐴, 𝐵, 𝐶) can be factorized as 𝐴 = 𝑋−∗Σ𝛼𝑌

−1,
𝐵 = 𝑋−∗Σ𝛽𝑈

∗, and 𝐶 = 𝑉Σ𝛾𝑌
−1, where 𝑋 ∈ ℂ𝑝×𝑝 and 𝑌 ∈ ℂ𝑞×𝑞 are nonsingular, and 𝑈 ∈ ℂ𝑚×𝑚 and

𝑉 ∈ ℂ𝑛×𝑛 are orthonormal. Furthermore, Σ𝛼, Σ𝛽, and Σ𝛾 have nonnegative entries and are such that[︃
Σ𝛼 Σ𝛽

Σ𝛾 0

]︃
can be written as

(9)

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑚1 𝑚2 𝑚3 𝑚4

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑛1

𝑛2

𝑛3

𝑛4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 𝐷𝛼 0 0 0 𝐷𝛽 0 0 0
0 0 0 𝐼 0 0 0 𝐼 0 0
0 0 0 0 𝐼 0 0 0 0 0
0 0 0 0 0 𝐼 0 0 0 0
0 0 0 0 0 0 0 0 0 𝐼

0 0 0 0 0 0 0 0 0 0
0 𝐼 0 0 0 0
0 0 𝐷𝛾 0 0 0
0 0 0 0 𝐼 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑝1 = 𝑞3 = 𝑟𝐴𝐵𝐶 + 𝑟𝐴 − 𝑟𝐴𝐵 − 𝑟𝐴𝐶

𝑝2 = 𝑞4 = 𝑟𝐴𝐶 + 𝑟𝐵 − 𝑟𝐴𝐵𝐶

𝑝3 = 𝑞5 = 𝑟𝐴𝐵 + 𝑟𝐶 − 𝑟𝐴𝐵𝐶

𝑝4 = 𝑞6 = 𝑟𝐴𝐵𝐶 − 𝑟𝐵 − 𝑟𝐶

𝑝5 = 𝑟𝐴𝐵 − 𝑟𝐴, 𝑞2 = 𝑟𝐴𝐶 − 𝑟𝐴

𝑝6 = 𝑝 − 𝑟𝐴𝐵, 𝑞1 = 𝑞 − 𝑟𝐴𝐶

𝑛1 = 𝑞2, 𝑚4 = 𝑝5

𝑛2 = 𝑚1 = 𝑝1 = 𝑞3

𝑛3 = 𝑝3 = 𝑞5, 𝑚2 = 𝑝2 = 𝑞4

𝑛4 = 𝑛 − 𝑟𝐶 , 𝑚3 = 𝑚 − 𝑟𝐵,

where 𝐷𝛼 = diag(𝛼1, . . . , 𝛼𝑝1), 𝐷𝛽 = diag(𝛽1, . . . , 𝛽𝑝1), and 𝐷𝛾 = diag(𝛾1, . . . , 𝛾𝑝1). Moreover, 𝛼 𝑗,
𝛽 𝑗, and 𝛾 𝑗 are scaled such that 𝛼2

𝑗
+ 𝛽2

𝑗
𝛾2
𝑗
= 1 for 𝑖 = 1, . . . , 𝑝1. Besides the 𝑝1 triplets (𝛼 𝑗, 𝛽 𝑗, 𝛾 𝑗), there

are 𝑝2 triplets (1, 1, 0), 𝑝3 triplets (1, 0, 1), 𝑝4 triplets (1, 0, 0), and min{𝑝5, 𝑞2} triplets (0, 1, 1).
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This leads to a total of 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 +min{𝑝5, 𝑞2} = 𝑟𝐴 +min{𝑝5, 𝑞2} = min{𝑟𝐴𝐵, 𝑟𝐴𝐶} regular
triplets of the form (𝛼, 𝛽, 𝛾) with 𝛼2 + 𝛽2𝛾2 = 1. Each of these triplets corresponds to a restricted
singular value 𝜎 = 𝛼/(𝛽𝛾), where the result is ∞ by convention if 𝛼 ≠ 0 and 𝛽𝛾 = 0. Finally, the
triplet has a right (or column) trivial block of dimension 𝑞1 = dim(N (𝐴) ∩N (𝐶)), and a left (or row)
trivial block of dimension 𝑝6 = dim(N (𝐴∗) ∩N (𝐵∗)).

As before, we first consider the one dimensional case and generalize Lemmas 4 and 8 to the
RSVD.

Lemma 12. Suppose 𝛼, 𝛽, and 𝛾 are positive real numbers and consider the pencil

A − _B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝛼 0 0
𝛼 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 𝛽 0
0 0 0 𝛾

𝛽 0 0 0
0 𝛾 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then the nonsingular matrices

X = Y = 𝜎−1/4 diag(𝛽−1, 𝛾−1,
√
𝜎,
√
𝜎),

where 𝜎 = 𝛼/(𝛽𝛾), are such that Y∗(A − _B)X is a pencil of the form (6).

Proof. The proof is by direct verification. □

With the definition of the RSVD in Theorem 11, and the reduction in Lemma 12, we can state
and prove the following theorem and corollary.

Theorem 13. Let 𝐴, 𝐵, 𝐶, and their corresponding RSVD be as in Theorem 11. Then the KCF of the
pencil

(10) A − _B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝐴 0 0
𝐴∗ 0 0 0
0 0 𝐼 0
0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 𝐵 0
0 0 0 𝐶∗

𝐵∗ 0 0 0
0 𝐶 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
consists of the following blocks.

1. A (𝑝6 + 𝑞1) × (𝑝6 + 𝑞1) zero block, which correspond to restricted singular triplets of the form
(0, 0, 0).

2. A series of 𝑝4 + 𝑞6 + 𝑚3 + 𝑛4 blocks 𝑁1, which correspond to (1, 0, 0) triplets.

3. A series of 𝑝2 blocks 𝑁3, which correspond to (1, 1, 0) triplets.

4. A series of 𝑝3 blocks 𝑁3, which correspond to (1, 0, 1) triplets.

5. A series of 𝑝5 + 𝑞2 = 𝑚4 + 𝑛1 blocks 𝐽2(0), which correspond to (0, 1, 1) triplets.

6. The blocks 𝐽1(
√
𝜎1), . . . , 𝐽1(

√
𝜎𝑝1), 𝐽1(−

√
𝜎1), . . . , 𝐽1(−

√
𝜎𝑝1), 𝐽1(𝑖

√
𝜎1), . . . , 𝐽1(𝑖

√
𝜎𝑝1),

𝐽1(−𝑖
√
𝜎1), . . . , 𝐽1(−𝑖

√
𝜎𝑝1), where 𝜎1, . . . , 𝜎𝑝1 are the finite and nonzero restricted singu-

lar values of the matrix triplet (𝐴, 𝐵, 𝐶).
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Proof. Let A0 − _B0 = A − _B, and define the transformations X0 = Y0 = diag(𝑋, 𝑌, 𝑈, 𝑉). Then
the pencil A1 − _B1 = Y∗

0 (A0 − _B0)X0 is a square 20 × 20 block matrix of dimension

𝑝1 + · · · + 𝑝6⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑝

+ 𝑞1 + · · · + 𝑞6⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑞

+ 𝑚1 + · · · + 𝑚4⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑚

+ 𝑛1 + · · · + 𝑛4⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑛

.

Now let X1 and Y1 be permutation matrices corresponding to the permutations

𝜋X = (6, 7, 12, 4, 15, 20, 10, 14, 2, 3, 19, 11, 5, 16, 8, 17, 1, 9, 13, 18),
𝜋Y = (6, 7, 4, 12, 15, 20, 2, 14, 10, 11, 19, 3, 16, 5, 17, 8, 1, 9, 13, 18),

respectively. Then the pencil A2 − _B2 = Y∗
1 (A1 − _B1)X1 is block diagonal, and has the following

blocks along its diagonal.

1. A (𝑝6 + 𝑞1) × (𝑝6 + 𝑞1) block of zeros.

2. The (𝑝4 + 𝑞6 + 𝑚3 + 𝑛4) × (𝑞6 + 𝑝4 + 𝑚3 + 𝑛4) block⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐼 0 0 0
0 𝐼 0 0
0 0 𝐼 0
0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑁1 ⊗ 𝐼,

where 𝑝4 = 𝑞6.

3. The (𝑝2 + 𝑚2 + 𝑞4) × (𝑞4 + 𝑚2 + 𝑝2) block⎡⎢⎢⎢⎢⎢⎣
𝐼 0 0
0 𝐼 0
0 0 𝐼

⎤⎥⎥⎥⎥⎥⎦ − _

⎡⎢⎢⎢⎢⎢⎣
0 𝐼 0
0 0 𝐼

0 0 0

⎤⎥⎥⎥⎥⎥⎦ = 𝑁3 ⊗ 𝐼,

where 𝑚2 = 𝑝2 = 𝑞4.

4. The (𝑞5 + 𝑛3 + 𝑝3) × (𝑝3 + 𝑛3 + 𝑞5) block⎡⎢⎢⎢⎢⎢⎣
𝐼 0 0
0 𝐼 0
0 0 𝐼

⎤⎥⎥⎥⎥⎥⎦ − _

⎡⎢⎢⎢⎢⎢⎣
0 𝐼 0
0 0 𝐼

0 0 0

⎤⎥⎥⎥⎥⎥⎦ = 𝑁3 ⊗ 𝐼,

where 𝑛3 = 𝑝3 = 𝑞5.

5. The (𝑚4 + 𝑝5 + 𝑛1 + 𝑞2) × (𝑝5 + 𝑚4 + 𝑞2 + 𝑛1) block⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝐼 0 0
0 0 0 0
0 0 0 𝐼

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐼 0 0 0
0 𝐼 0 0
0 0 𝐼 0
0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[︄
𝐽2(0) ⊗ 𝐼

𝐽2(0) ⊗ 𝐼

]︄

where 𝑚4 = 𝑝5 and 𝑛1 = 𝑞2, which yields 𝑝5 +𝑞2 blocks 𝐽2(0) in the KCF of (10) after suitable
permutations.
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6. The (𝑝1 + 𝑞3 + 𝑚1 + 𝑛2) × (𝑝1 + 𝑞3 + 𝑚1 + 𝑛2) block⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝐷𝛼 0 0
𝐷𝛼 0 0 0
0 0 𝐼 0
0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 𝐷𝛽 0
0 0 0 𝐷𝛾

𝐷𝛽 0 0 0
0 𝐷𝛾 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝑚1 = 𝑛2 = 𝑝1 = 𝑞3, which reduces to a diagonal matrix with the Jordan “blocks”
𝐽1(±

√±𝜎 𝑗) after suitable permutations and applying Lemma 12.

□

Corollary 14. The eigenvectors belonging to the nonzero finite eigenvalues √𝜎 𝑗, −
√
𝜎 𝑗, 𝑖

√
𝜎 𝑗, and

−𝑖√𝜎 𝑗 are⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝛽−1
𝑗
𝑥 𝑗

𝛾−1
𝑗
𝑦 𝑗

√
𝜎 𝑗𝑢 𝑗

√
𝜎 𝑗𝑣 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−𝛽−1

𝑗
𝑥 𝑗

−𝛾−1
𝑗
𝑦 𝑗

√
𝜎 𝑗𝑢 𝑗

√
𝜎 𝑗𝑣 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−𝑖𝛽−1

𝑗
𝑥 𝑗

𝑖𝛾−1
𝑗
𝑦 𝑗

√
𝜎 𝑗𝑢 𝑗

−√𝜎 𝑗𝑣 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑖𝛽−1

𝑗
𝑥 𝑗

−𝑖𝛾−1
𝑗
𝑦 𝑗

√
𝜎 𝑗𝑢 𝑗

−√𝜎 𝑗𝑣 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

respectively. Here 𝑢 𝑗 = 𝑈𝑒 𝑗, 𝑣 𝑗 = 𝑉𝑒𝑛1+ 𝑗, 𝑥 𝑗 = 𝑋𝑒 𝑗, and 𝑦 𝑗 = 𝑌𝑒𝑞1+𝑞2+ 𝑗.

A comparison with the KCF of the typical augmented pencil (5) might be insightful. Using the
transform diag(𝑈, 𝑌 ) and noting that we get a 12 × 12 block matrix with sizes

𝑝 + 𝑞 = 𝑝1 + · · · + 𝑝6 + 𝑞1 + · · · + 𝑞6,

we can use the permutations

𝜋X = (6, 7, 12, 4, 10, 2, 3, 11, 5, 8, 1, 9),
𝜋Y = (6, 7, 4, 12, 2, 10, 11, 3, 5, 8, 1, 9).

to see that we get the following blocks for the KCF of (5).

1. A (𝑝6 + 𝑞1) × (𝑝6 + 𝑞1) zero block.

2. A (𝑝4 + 𝑞6) × (𝑞6 + 𝑝4) block 𝑁1 ⊗ 𝐼.

3. A (𝑝2 + 𝑞4) × (𝑞4 + 𝑝2) block 𝑁2 ⊗ 𝐼.

4. A (𝑝3 + 𝑞5) × (𝑞5 + 𝑝3) block 𝑁2 ⊗ 𝐼.

5. A (𝑝5 + 𝑞2) × (𝑝5 + 𝑞2) block 𝐽1(0) ⊗ 𝐼.

6. A (𝑝1 + 𝑞3) × (𝑝1 + 𝑞3) block[︄
0 𝐷𝛼

𝐷𝛼 0

]︄
− _

[︄
𝐷2
𝛽

0

0 𝐷2
𝛾

]︄
.

Hence, we see that the KCF of (5) and (10) have comparable blocks. The primary qualitative
difference is that the zero singular values do not result in Jordan blocks of size larger than 1.

11



6 A tree of generalized singular value decompositions. For the OSVD we started with the
matrix pencil (7), where A and B together have a total of eight nonzero blocks. Two of these blocks
are the considered matrix 𝐴 and its Hermitian transpose 𝐴∗, the remaining six blocks are identity
matrices. Then, for the QSVD we replaced two of these identity matrices with the considered matrix
𝐶 and its Hermitian transpose 𝐶∗. Next, for the RSVD we replaced two more identity matrices with
the considered 𝐵 and its Hermitian transpose 𝐵∗. We now have two identity matrices left, and
a natural question to ask is: if we replace these two identities with two other matrices, can we
meaningfully interpret the resulting pencil as a generalized SVD? The answer to this question is yes
if we take

(11) A − _B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝐴 0 0
𝐴∗ 0 0 0
0 0 𝐷∗𝐷 0
0 0 0 𝐸𝐸∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− _

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 𝐵 0
0 0 0 𝐶∗

𝐵∗ 0 0 0
0 𝐶 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝐷 ∈ ℂ𝑘×𝑚 and 𝐸 ∈ ℂ𝑛×𝑙 for some 𝑘, 𝑙 ≥ 1. To see this, suppose for simplicity that 𝐷 and 𝐸

are both invertible, then the pencil above corresponds to the RSVD of the triplet (𝐴, 𝐵𝐷−1, 𝐸−1𝐶). In
turn, the restricted singular values of the latter triplet coincide with the ordinary singular values of
the product 𝐷𝐵−1𝐴𝐶−1𝐸 if 𝐵 and 𝐶 are also invertible. The usefulness of this QQQQ-SVD is unclear,
and the pencil (11), which is no longer cross product–free, is primarily of theoretical interest. For
the full definition of this decomposition, see De Moor and Zha [4] for more details.

7 Numerical experiments. The general idea for the experiments in this section is straightfor-
ward. Simply generate matrices with sufficiently large condition numbers, form the pencils (4),
(8), (5), and (10), and check the accuracy of the computed generalized eigenvalues. The following
table summarizes the relation between the various singular value problems, their reformulations as
matrix pencils, and the corresponding eigenvalues.

_ OSVD QSVD RSVD

𝜎2 (1) (3) —
±𝜎 (2) (4) (5)

±
√
±𝜎 (7) (8) (10)

We can generate the matrices in different ways, but the straightforward approaches described
next suffice to prove the usefulness of the new pencils. We proceed as follows for the QSVD; given
the dimension 𝑛 and sufficiently large condition numbers ^𝑌 and ^Σ:

1. Generate random orthonormal matrices 𝑈𝑌 , 𝑉𝑌 , 𝑈 and 𝑉 [16].

2. Compute Σ𝑌 = diag([1, . . . , [𝑛) and 𝑌 = 𝑈𝑌Σ𝑌𝑉𝑇
𝑌 , where [ 𝑗 = ^

1/2−( 𝑗−1)/(𝑛−1)
𝑌 .

3. Let Σ = diag(𝜎1, . . . , 𝜎𝑛), Σ𝛼 = diag(𝛼1, . . . , 𝛼𝑛), and Σ𝛾 = diag(𝛾1, . . . , 𝛾𝑛), where 𝜎 𝑗 =

^
1/2−( 𝑗−1)/(𝑛−1)
Σ , 𝛼 𝑗 = 𝜎 𝑗(1 + 𝜎2

𝑗
)−1/2, and 𝛾 𝑗 = (1 + 𝜎2

𝑗
)−1/2.

4. Compute 𝐴 = 𝑈Σ𝛼𝑌
−1 and 𝐶 = 𝑉Σ𝛾𝑌

−1.

With the steps above we generate matrices satisfying ^(𝑌 ) = ^𝑌 , Σ = Σ𝛼Σ−1𝛾 , Σ2
𝛼 +Σ2

𝛾 = 𝐼, ^(Σ) = ^Σ,
and ^(Σ𝛼) = ^(Σ𝛾) = ^

1/2
Σ . To ensure we do not lose precision prematurely, we must do all the

computations in higher-precision arithmetic1 and convert 𝐴 and 𝐶 to IEEE 754 double precision at

1The required random numbers are generated in double precision for simplicity.
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the end. Given the dimension 𝑛 and the condition numbers ^𝑋 , ^𝑌 , and ^Σ, we can take a similar
approach for the RSVD.

1. Generate 𝑈, 𝑉, 𝑌 , Σ, Σ𝛼, and Σ𝛾 as before, and let Σ𝛽 = 𝐼.

2. Generate 𝑋 in the same way as 𝑌 , but with the condition number ^𝑋 instead of ^𝑌 .

3. Let 𝐴 = 𝑋−𝑇Σ𝛼𝑌
−1, 𝐵 = 𝑋−𝑇Σ𝛽𝑈

𝑇 , and 𝐶 = 𝑉Σ𝛾𝑌
−1.

Again, we have to do all the computations in higher-precision arithmetic and convert 𝐴, 𝐵, and 𝐶 to
double precision at the end.

Since the generated 𝐵 and 𝐶 have full row and column ranks, respectively, the pencils (4) and
(5) are Hermitian positive definite generalized eigenvalue problems. This means that we can use
specialized solvers to compute the generalized eigenvalues and vectors. The same is not true for (8)
and (10), where both A and B are indefinite. Thus, we have to use generic eigensolvers that do not
take the special structure of the pencils into account. And as a result, the computed eigenvalues
may not be purely real or purely imaginary. Furthermore, suppose that˜︁_1 ≈ √

𝜎, ˜︁_2 ≈ 𝑖
√
𝜎, ˜︁_3 ≈ −

√
𝜎, and ˜︁_4 ≈ −𝑖

√
𝜎,

then we have no guarantee that the magnitudes |_ 𝑗 | match to high accuracy. The latter problem
leads to the question: which |_ 𝑗 | should we pick? Anecdotal observations suggest that the squared
(absolute) geometric mean

(12) ( |_1 | |_2 | |_3 | |_4 |)−1/2 ≈ 𝜎

is a reasonable choice.
We choose one small example to illustrate the accuracy lost from working with cross products,

and also the approximation picking problem. Suppose that 𝑛 = 4, ^𝑌 = 107, and ^Σ = 10; then we
get the following results for a randomly generated matrix pair. First the exact quotient singular
values rounded to 12 digits after the point:

3.162277660168 1.467799267622 0.681292069058 0.316227766017.

Taking the square roots of the generalized eigenvalues of the pencil (3) gives:

3.186032382196 1.467953130046 0.681383277148 0.316227883689.

The magnitudes of the generalized eigenvalues of the augmented pencil (4) are:

3.186055633628 1.467953295365 0.681384866293 0.316227814411
3.186055633628 1.467953295365 0.681384866293 0.316227814411.

The cross product–free pencil gives the squared magnitudes:

3.162277324135 1.467799263849 0.681292066129 0.316227766010
3.162277661974 1.467799267618 0.681292069112 0.316227766020
3.162277661974 1.467799267618 0.681292069112 0.316227766020
3.162278000456 1.467799271389 0.681292072105 0.316227766030.

Taking the squared absolute geometric means (12) yields:

3.162277662135 1.467799267619 0.681292069115 0.316227766020.
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For comparison, the generalized singular values computed with LAPACK, which uses a Jacobi-type
iteration (see, e.g., Bai and Demmel [3] and the routine xTGSJA) are:

3.162277659936 1.467799267555 0.681292069045 0.316227766024.

The underlined digits of the approximations serve as a visual indicator of their accuracy; if 𝑑
decimals places are underlined, then 𝑑 is the largest integer for which the absolute error is less than
5 · 10−(𝑑+1) . The loss of accuracy caused by the cross products in the pencils (3) and (4) is obvious
in the results. We can also see that the digits of pairs of eigenvalues of the typical augmented pencil
(4) match, while the final two to four digits of the eigenvalues from the new cross product–free
pencil (8) differ. Still, the results of the latter are about as accurate as the singular values computed
by LAPACK [1]. Hence, users should prefer LAPACK for computing the QSVD of dense matrix pairs,
but may consider using (8) in combination with existing solvers for sparse matrix pairs.
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Figure 1: The median of the maximum errors in the computed quotient singular values. On the left
^Σ = ^𝑋 = 10 and ^𝑌 varies, and on the right ^𝑋 = ^𝑌 = 10 and ^Σ varies. The dash-dotted line
corresponds to the quadratic pencil (3), the solid line to the typical augmented pencil (4), the dashed line
to the cross product–free pencil (8), and the dotted line to the LAPACK results.

For a more quantitative analysis, we can generate a large number of matrix pairs and triplets
for each combination of 𝑛, ^𝑋 , ^𝑌 , and ^Σ. For each sample we compute the singular values using
the different methods we have available, and use the (squared) absolute geometric mean, when
necessary, to average the approximations of each singular value. Then we compute the approximation
errors and pick the maximum error for each matrix pair or triplet. And finally, we take the median
of all the maximum errors. As a measure for the error we can use the chordal metric

𝜒(𝜎,˜︁𝜎) = |𝜎 −˜︁𝜎|
√
1 + 𝜎2

√
1 +˜︁𝜎2

=
|𝜎−1 −˜︁𝜎−1 |

√
1 + 𝜎−2

√
1 +˜︁𝜎−2 .

Here 𝜎 is an exact (computed with high-precision arithmetic) singular value, and ˜︁𝜎 is a computed
approximation.

Figure 1 shows the results for the QSVD with 10000 samples for each combination of parameters.
The figure shows that we lose about twice as much accuracy with (3) and (4) than with the new
cross product–free pencil. Furthermore, we see that the quotient singular values computed from the
new pencil are almost as accurate as the ones computed with LAPACK. When we increase ^Σ while
keeping ^𝑌 modest, we see that the squared and augmented pencils lost accuracy as ^Σ increases,
while the results from the new pencil and LAPACK remain small.

Likewise, Figure 2 shows the results for the RSVD. Again we see that we lose accuracy about
twice as fast when using cross products if ^𝑌 increases and ^𝑋 and ^Σ remain modest. Furthermore,
we also again see that we lose accuracy with cross products when ^𝑋 and ^𝑌 remain modest and ^Σ

increases, while the cross product–free approaches keep producing accurate results.
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Figure 2: The median of the maximum errors in the computed restricted singular values. On the left
^𝑋 = ^Σ = 10 and ^𝑌 varies, on the right ^Σ = 10 and ^𝑋 = ^𝑌 varies; 𝑛 = 10 in both cases. The solid line
corresponds to the typical augmented pencil (5), the dashed line to the cross product–free pencil (10),
and the dotted line (on top of the dashed line) to the results from the RSVD algorithm described in [24].

8 Conclusion. We have seen how we can reformulate the quotient and restricted singular value
problems as generalized eigenvalue problems, and without using cross products like 𝐴∗𝐴, 𝐵𝐵∗, or
𝐶∗𝐶. Moreover, the numerical examples show the benefits of working with the cross product–free
pencils instead of the typical augmented pencils. That is, singular values computed from the former
may be more accurate than singular values computed form the latter when 𝐵 or 𝐶 are ill-conditioned.

Still, when we use the cross product–free pencils we have to contend with downsides that we
have ignored so far. For example, for the QSVD and square 𝐴 and 𝐶, the dimension of the cross
product–free pencil (8) is twice as large as the dimension of the typical augmented pencil (4), and
four times as large as the dimension of the squared pencil (3). This makes a large computational
difference for dense solvers with cubic complexity. Another problem is that we can no longer use
specialized solvers for Hermitian-positive-definite problems, even when 𝐵 is of full row rank and 𝐶

of full column rank. We also have to contend with extra Jordan blocks, for example for 𝜎 = 0, and
the difficulties that numerical software has when dealing with Jordan blocks.

But the above downsides of the cross product–free pencils also provide opportunities for future
research. For example, can we reduce the performance overhead by developing solvers (e.g., for
large-and-sparse matrices) that exploit the block structure of the pencils? Can we incorporate our
knowledge of the structure of the spectrum to improve the computed results?
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