
Towards a more robust algorithm for computing the restricted
singular value decomposition*

Ian N. Zwaan†

Abstract. A new algorithm to compute the restricted singular value decomposition of dense matrices is presented. Like
Zha’s method [29], the new algorithm uses an implicit Kogbetliantz iteration, but with four major innovations. The first
innovation is a useful quasi-upper triangular generalized Schur form that just requires orthonormal transformations
to compute. Depending on the application, this Schur form can be used instead of the full decomposition. The second
innovation is a new preprocessing phase that requires fewer rank determinations than previous methods. The third
innovation is a numerically stable RSVD algorithm for 2×2 upper-triangular matrices, which forms a key component of the
implicit Kogbetliantz iteration. The fourth innovation is an alternative scaling for the restricted singular triplets that results
in elegant formulas for their computation. Beyond these four innovations, the qualitative (numerical) characteristics of the
algorithm are discussed extensively. Some numerical challenges in the (optional) postprocessing phase are considered too;
though, their solutions require further research. Numerical tests and examples confirm the effectiveness of the method.

Key words. Restricted singular value decomposition, RSVD, Kogbetliantz, numerically stable, rank decisions.

AMS subject classification. 65F15; 65F22; 65F30; 65F50; 65R30; 65R32

1 Introduction. The restricted singular value decomposition (RSVD) is a generalization of the
ordinary singular value decomposition (SVD or OSVD) to matrix triplets. Applications of the RSVD
include, for example, rank minimization of structured perturbations, unitarily invariant norm
minimization with rank constraints, low rank approximation of partitioned matrices, restricted
total least squares, generalized Gauss–Markov models, etc. See, e.g., Zha [28, 29], De Moor and
Golub [11], and their references for more information. The problem is that computing the RSVD
accurately and robustly is challenging, and avoiding numerical pitfalls is hard. The goal of the ideas
and algorithms presented in this work is to improve upon existing computation methods in these
areas, even though some numerical challenges remain.

The RSVD is a little-known generalization of the OSVD. Better-known is “the” generalized
singular value decomposition (GSVD) for matrix pairs; see, e.g., Bai [3]. For now, it suffices to
think of the RSVD as a GSVD for three matrices instead of two, with a formal definition following
in Section 2. Since the RSVD and GSVD are just two out of infinitely many generalizations of the
OSVD [9], a more appropriate name for the GSVD is the “quotient singular value decomposition”
(QSVD). Thus, we adopt the mnemonics O-Q-R-SVD as standardized nomenclature for the rest of
the text, as suggested by De Moor and Golub [10]. For more information on the relation between
the SVD, QSVD, and RSVD, see, for example, De Moor and Golub [11, Sec. 2.2.4].

One illustration of the fact that computing the RSVD in a numerically sound way is not straight-
forward is Zha’s constructive proof [28, Thm. 3.2], which he describes as unsuitable for computation.
This is because it uses transformations with potentially ill-conditioned matrices in intermediate steps.
Zha addresses this issue by deriving an implicit Kogbetliantz algorithm [29], but this algorithm
lacks a (numerically) stable method for computing 2 × 2 RSVDs (cf. the 2 × 2 QSVD from Bai and
Demmel [4]). Furthermore, the preprocessing phase of his implicit Kogbetliantz algorithm requires a
sequence of up to four rank decisions, where each depends on the previous one. These dependencies,

*Version: February 10, 2020. This work was supported in part by the Deutsche Forschungsgemeinschaft through the
collaborative research centre SFB-TRR55.

†Faculty of Mathematics and Natural Sciences, Bergische Universität Wuppertal, ianzwaan.com.

1

ianzwaan.com

and the fact that rank determination is an ill-posed problem in floating-point arithmetic, make the
preprocessing prone to errors. For example, it would be straightforward to construct a matrix triplet
where we should have a clear gap in the singular values for each rank decision in exact arithmetic,
but no longer have any gap (or a gap in the right place) for the fourth, or even third, rank decision
in floating-point arithmetic. These faulty rank decisions can even show up if we use OSVD instead
of, e.g., QR with pivoting, for the rank decisions.

Chu, De Lathauwer, and De Moor [8] present a QR based method which does not require a
numerically stable 2×2 RSVD. Still, their method requires a sequence of up to fivemutually dependent
rank decisions, and it may also require nonorthonormal transformations in the preprocessing phase.

Another algorithm to compute the restricted singular values (RSVs) is due to Drmač [15],
who uses both a Jacobi-type iteration and nonorthonormal transformations. Despite the latter, the
algorithm still has favorable numerical properties, such as independence of certain types of diagonal
scaling. Drmač also provides a bound on the backward error of his method, and discusses when one
can expect the computed singular values to have high relative accuracy. A potential downside of this
method is that it does not compute the “full” RSVD. Another issue is that the algorithm requires the
assumption that one of the input matrices is nonsingular, which needs not be true in the general
case.

Like Zha’s algorithm, the algorithm in this work centers around an implicit Kogbetliantz iteration,
but with four main innovations over the existing algorithms. The first main innovation is a generalized
Schur-form RSVD consisting of a triplet of quasi upper-triangular matrices that we can compute just
with orthonormal transformations. In particular, this Schur form allows us to skip the postprocessing
necessary to get the full decomposition, while still being useful for certain applications; see Section 2
for details. The second main innovation is a new preprocessing phase, discussed in Section 3, that
uses fewer transformations and rank decisions, and has fewer dependencies between the rank
decisions. The third main innovation is a numerically stable 2 × 2 RSVD algorithm like Bai and
Demmel’s backward stable 2 × 2 QSVD algorithm [4]. This 2 × 2 algorithm is a crucial part of the
implicit Kogbetliantz iteration, and we investigate its numerical properties in exact and floating-point
arithmetic in Sections 4.2, 4.3, and 5. The fourth main innovation is primarily discussed in Section 6
and consists of an alternative scaling of the restricted singular value triplets. This new scaling leads
to mathematically and numerically elegant formulas for the computation of the triplets.

Since rank revealing decompositions do not necessarily need to use orthonormal transformations,
we can combine ideas from Drmač’s nonorthogonal algorithm with the new preprocessing phase
and the implicit Kogbetliantz iteration from this work. Section 8 contains an overview of how this
hybrid algorithm would work. While the use of nonorthogonal transformations in the earlier phases
is optional, the postprocessing phase generally requires nonorthogonal transformations, as we will
see in Section 7.

The numerical tests in Section 9 consist of three parts. The first part is dedicated to verifying
the numerical properties of the 2 × 2 RSVD algorithm. The second part focuses on the rate of
convergence of the implicit Kogbetliantz iteration. The third part compares the accuracy of the new
RSVD method with existing methods, and also compares the effect of different implementations of
the preprocessing phase on the accuracy. The results show that the new 2 × 2 RSVD is numerically
stable, and that the implicit Kogbetliantz iteration typically converges rapidly and can compute the
RSVs with high accuracy. In fact, for ill-conditioned matrices the accuracy the new method can
exceed that of existing methods by several orders of magnitude.

Throughout this work we use uppercase letters for matrices, lowercase letters for their elements
and for scalars, and bold lowercase letters for vectors. The matrix 𝐼 is always an identity matrix, 𝒆 𝑗
the 𝑗th canonical basis vector, 0 a zero matrix or scalar, and × an arbitrary matrix or scalar that
can be nonzero. These quantities always have a size that is appropriate for the context in which
they are used. In some places we use Matlab notation when stacking block matrices vertically; for

2

example, [𝐴; 𝐶] = [𝐴𝑇 𝐶𝑇]𝑇 . As usual, ∥ · ∥𝑝 denotes the (induced) 𝑝-norm for 1 ≤ 𝑝 ≤ ∞, and
we sometimes drop the index for 𝑝 = 2 when no other norms are used in the same context. Other
norms that we use are the Frobenius norm ∥ · ∥𝐹 and the max norm ∥ · ∥max, where the latter equals
the largest magnitude of any element in the matrix. Finally, the absolute value notation | · | acts
elementwise on matrices.

2 Background and theory. The definition of the RSVD given by the theorem below combines the
ones from Zha [28, Lem. 4.1] and De Moor and Golub [11, Thm. 1], but with some small changes.
In particular, some of the blocks in (1) are in a different position, which helps with the computation
of the decomposition, and some of the trivial triplets are counted differently. Furthermore, the
theorem below and the theory and algorithms in the rest of this work focus on the real case for
simplicity and clarity, although we can compute the RSVD of a triplet of complex matrices too.

Theorem 1 (RSVD — Diagonal Form). Let 𝐴 ∈ ℝ𝑝×𝑞, 𝐵 ∈ ℝ𝑝×𝑚, and 𝐶 ∈ ℝ𝑛×𝑞, and define
𝑟𝐴 = rank 𝐴, 𝑟𝐵 = rank 𝐵, 𝑟𝐶 = rank 𝐶, 𝑟𝐴𝐵 = rank [𝐴 𝐵], 𝑟𝐴𝐶 = rank [𝐴; 𝐶], and 𝑟𝐴𝐵𝐶 = rank

[︁
𝐴 𝐵
𝐶 0

]︁
.

Then the triplet of matrices (𝐴, 𝐵, 𝐶) can be factorized as 𝐴 = 𝑋−𝑇Σ𝛼𝑌−1, 𝐵 = 𝑋−𝑇Σ𝛽𝑈𝑇 , and
𝐶 = 𝑉Σ𝛾𝑌−1, where 𝑋 ∈ ℝ𝑝×𝑝 and 𝑌 ∈ ℝ𝑞×𝑞 are nonsingular, and 𝑈 ∈ ℝ𝑚×𝑚 and 𝑉 ∈ ℝ𝑛×𝑛 are
orthonormal. Furthermore, Σ𝛼, Σ𝛽, and Σ𝛾 are quasi-diagonal¹ with nonnegative entries, and are such
that

[︃
Σ𝛼 Σ𝛽
Σ𝛾

]︃
can be written as

(1)

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑚1 𝑚2 𝑚3 𝑚4

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑛1

𝑛2

𝑛3

𝑛4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 𝐷𝛼 0 0 0 𝐷𝛽 0 0 0
0 0 0 𝐼 0 0 0 𝐼 0 0
0 0 0 0 𝐼 0 0 0 0 0
0 0 0 0 0 𝐼 0 0 0 0
0 0 0 0 0 0 0 0 0 𝐼

0 0 0 0 0 0 0 0 0 0
0 𝐼 0 0 0 0
0 0 𝐷𝛾 0 0 0
0 0 0 0 𝐼 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑝1 = 𝑞3 = 𝑟𝐴𝐵𝐶 + 𝑟𝐴 − 𝑟𝐴𝐵 − 𝑟𝐴𝐶

𝑝2 = 𝑞4 = 𝑟𝐴𝐶 + 𝑟𝐵 − 𝑟𝐴𝐵𝐶

𝑝3 = 𝑞5 = 𝑟𝐴𝐵 + 𝑟𝐶 − 𝑟𝐴𝐵𝐶

𝑝4 = 𝑞6 = 𝑟𝐴𝐵𝐶 − 𝑟𝐵 − 𝑟𝐶

𝑝5 = 𝑟𝐴𝐵 − 𝑟𝐴, 𝑞2 = 𝑟𝐴𝐶 − 𝑟𝐴

𝑝6 = 𝑝 − 𝑟𝐴𝐵, 𝑞1 = 𝑞 − 𝑟𝐴𝐶

𝑛1 = 𝑞2, 𝑚4 = 𝑝5

𝑛2 = 𝑚1 = 𝑝1 = 𝑞3

𝑛3 = 𝑝3 = 𝑞5, 𝑚2 = 𝑝2 = 𝑞4

𝑛4 = 𝑛 − 𝑟𝐶 , 𝑚3 = 𝑚 − 𝑟𝐵,

where 𝐷𝛼 = diag(𝛼1, . . . , 𝛼𝑝1), 𝐷𝛽 = diag(𝛽1, . . . , 𝛽𝑝1), and 𝐷𝛾 = diag(𝛾1, . . . , 𝛾𝑝1). Moreover, 𝛼 𝑗,
𝛽 𝑗, and 𝛾 𝑗 are scaled such that 𝛼2

𝑗
+ 𝛽2

𝑗
𝛾2
𝑗
= 1 for 𝑖 = 1, . . . , 𝑝1. Besides the 𝑝1 triplets (𝛼 𝑗, 𝛽 𝑗, 𝛾 𝑗), there

are 𝑝2 triplets (1, 1, 0), 𝑝3 triplets (1, 0, 1), 𝑝4 triplets (1, 0, 0), and min{𝑝5, 𝑞2} triplets (0, 1, 1).
This leads to a total of 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + min{𝑝5, 𝑞2} = 𝑟𝐴 + min{𝑝5, 𝑞2} = min{𝑟𝐴𝐵, 𝑟𝐴𝐶} regular
triplets of the form (𝛼, 𝛽, 𝛾) with 𝛼2 + 𝛽2𝛾2 = 1. Each of these triplets corresponds to a restricted
singular value 𝜎 = 𝛼/(𝛽𝛾), where the result is ∞ by convention if 𝛼 ≠ 0 and 𝛽𝛾 = 0. Finally, the
triplet has a right (or column) trivial block of dimension 𝑞1 = dim(N (𝐴) ∩N (𝐶)), and a left (or row)
trivial block of dimension 𝑝6 = dim(N (𝐴𝑇) ∩N (𝐵𝑇)).

Remark 2. Zha [28, Sec. 4] and De Moor and Golub [11, Sec. 2.1] differ in the triplets that they list.
In particular, the former does not list any of the triplets (0, 0, 0), (0, 0, 1), and (0, 1, 0); whereas the
latter do not list (0, 1, 1), but instead the equivalent of 𝑝5 triplets (0, 1, 0) and 𝑞2 triplets (0, 0, 1).
Theorem 1 adopts Zha’s definition of (0, 1, 1), because of [28, Thm. 4.2] and the simple example
(𝐴, 𝐵, 𝐶) = (0, 1, 1), and avoids problematic definitions of trivial triplets by listing the left and right
trivial blocks.

1A quasi-diagonal matrix, in this work, is a matrix that is diagonal after removing all zero rows and columns.

3

Remark 3. The typical scaling of the triplets (𝛼𝑖, 𝛽𝑖, 𝛾𝑖) in literature is such that 𝛼2
𝑖
+ 𝛽2

𝑖
+ 𝛾2

𝑖
= 1,

rather than 𝛼2
𝑖
+ 𝛽2

𝑖
𝛾2
𝑖
= 1 as in the theorem above. But we will see in Section 6 that the latter scaling

has theoretical and computational benefits. Besides, if 𝛼2
𝑖
+ 𝛽2

𝑖
𝛾2
𝑖
= 1, then we can compute (as in

Zha [28, Thm. 4.1])˜︁𝛼𝑖 = 𝛼2
𝑖
(1+𝛼2

𝑖
)−1/2, ˜︁𝛽𝑖 = 𝛽𝛾𝑖, and˜︁𝛾𝑖 = 𝛼𝑖(1+𝛼2

𝑖
)−1/2, so that˜︁𝛼2

𝑖
+˜︁𝛽2

𝑖
+˜︁𝛾2

𝑖
= 1.

Corollary 4 (RSVD — Triangular Form). Let 𝑋−𝑇 = 𝑃𝑆 and 𝑌−1 = 𝑇𝑄𝑇 , where 𝑃 ∈ ℝ𝑝×𝑝 and
𝑄 ∈ ℝ𝑞×𝑞 are orthonormal, and 𝑆 ∈ ℝ𝑝×𝑝 and 𝑇 ∈ ℝ𝑞×𝑞 are nonsingular and upper triangular. Then
the triplet (𝐴, 𝐵, 𝐶) can be factorized as 𝐴 = 𝑃(𝑆Σ𝛼𝑇)𝑄𝑇 , 𝐵 = 𝑃(𝑆Σ𝛽)𝑈𝑇 , and 𝐶 = 𝑉 (Σ𝛾𝑇)𝑄𝑇 .

Suppose that 𝐴, 𝐵, and 𝐶 are nonsingular and have compatible sizes; then the restricted
singular values of the triplet (𝐴, 𝐵, 𝐶) are the ordinary singular values of 𝐵−1𝐴𝐶−1. Just like Drmač’s
algorithm [15], the method described in this work is to look at the singular values of 𝐶𝐴−1𝐵 instead.
The benefit for more general matrices is that it suffices to “extract” a triplet with a nonsingular 𝐴
during the preprocessing, rather than having to extract a triplet with nonsingular 𝐵 and 𝐶 (cf. Zha’s
algorithm [29]). It turns out that this alternative extraction requires fewer transformations, and
more importantly, fewer rank decisions. To see why we can change our perspective like this, we first
need the following definition of the regular RSVs.

Theorem 5 (Zha [28, Def. 2.1]). The regular restricted singular values of the matrix triplet 𝐴, 𝐵, and
𝐶 can be characterized as

𝜎𝑖 = min
𝐷

{∥𝐷∥ : rank(𝐴 + 𝐵𝐷𝐶) ≤ 𝑖 − 1} (𝑖 = 1, . . . , 𝑟𝐴 + min{𝑝5, 𝑞2}).

The value 𝜎𝑖 = ∞ corresponds to the situation that we cannot find any matrix 𝐷 to make the rank of
𝐴 + 𝐵𝐷𝐶 less than or equal to 𝑖 − 1.

Now we can prove the following proposition, which formalizes the idea of working with 𝐶𝐴−1𝐵

instead of 𝐵−1𝐴𝐶−1 for general matrices.

Proposition 6. Suppose that the matrices 𝐴, 𝐵, and 𝐶 have compatible sizes and that the restricted
singular values of the triplet (𝐴, 𝐵, 𝐶) are defined as in Theorem 5. Then, for the nonzero restricted
singular values it holds that

(2) 𝜎−1
𝑖 = min

𝐷
{∥𝐷∥ | rank(𝐷 + 𝐶𝐴†𝐵) ≤ 𝑟𝐴 − 𝑖} (𝑖 = 1, . . . , 𝑟𝐴),

where 𝐴† denotes the Moore–Penrose pseudoinverse of 𝐴 and ∞−1 = 0 by convention. The remaining
min{𝑝5, 𝑞2} regular RSVs can be characterized as 0−1 = ∞.

Proof. Suppose that 𝐴, 𝐵, and 𝐶 are decomposed as in Theorem 1 and let 𝐸 = 𝑉𝑇𝐷𝑈; then
𝑉𝑇 (𝐶𝐴†𝐵)𝑈 = Σ𝛾Σ

†
𝛼Σ𝛽 and rank(𝐷 + 𝐶𝐴†𝐵) = rank(𝐸 + Σ𝛾Σ

†
𝛼Σ𝛽). By using the definition of

the Σs and the fact that ∥𝐷∥ = ∥𝐸∥, it follows that the minimization in (2) is equivalent to

min
𝐸

{︃
∥𝐸∥ | rank

[︃
𝐸11 𝐸12

𝐸21+𝐷𝛾𝐷−1
𝛼 𝐷𝛽 𝐸22

𝐸31 𝐸32

]︃
≤ 𝑟𝐴 − 𝑖

}︃
,

which equals 𝜎−1
𝑖

for the nonzero RSVs. In particular 𝜎−1
𝑖

= 0 for 𝑖 = 1, . . . , 𝑝2 + 𝑝3 + 𝑝4, and
𝜎−1
𝑖

> 0 for 𝑖 = 𝑝2 + 𝑝3 + 𝑝4 + 1, . . . , 𝑟𝐴. □

We can interpret the proposition above as a generalization of Zha [28, Cor 4.1], but it is also
related to the analysis of generalized Schur complements in De Moor and Golub [11, Sec. 3.2.1]. An
important observation is that we do not need the full RSVD to compute 𝐶𝐴†𝐵. In fact, the outputs
of the new algorithm after the preprocessing phase and the implicit Kogbetliantz iteration are the
matrices 𝑃, 𝑄, 𝑈, and 𝑉, and the products 𝑃𝑇𝐴𝑄, 𝑃𝑇𝐵𝑈, and 𝑉𝑇𝐶𝑄, which are such that

(𝑉𝑇𝐶𝑄) (𝑃𝑇𝐴𝑄)†(𝑃𝑇𝐵𝑈) = Σ𝛾Σ
†
𝛼Σ𝛽

4

is quasi-diagonal and easily determined. The postprocessing is only necessary to get the individual
factors 𝑆 and 𝑇 , and it depends on the application if we need those. This suggest the following
decomposition, which can be thought of as kind of generalized Schur decomposition like the QZ
decomposition for generalized eigenvalue problems.

Theorem 7 (RSVD — Generalized Schur form). Let 𝐴 ∈ ℝ𝑝×𝑞, 𝐵 ∈ ℝ𝑝×𝑚, and 𝐶 ∈ ℝ𝑛×𝑞; then there
exist orthonormal matrices 𝑃, 𝑄, 𝑈, and 𝑉, such that

𝑃𝑇𝐴𝑄 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5

𝑝1 0 0 𝐴13 𝐴14 𝐴15

𝑝2 0 0 0 𝐴24 𝐴25

𝑝3 0 0 0 0 𝐴35

𝑝4 0 0 0 0 0
𝑝5 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(3)

𝑃𝑇𝐵𝑈 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚1 𝑚2 𝑚3 𝑚4

𝑝1 0 𝐵12 𝐵13 𝐵14

𝑝2 0 0 𝐵23 𝐵24

𝑝3 0 0 0 𝐵34

𝑝4 0 0 0 𝐵44

𝑝5 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(4)

𝑉𝑇𝐶𝑄 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5

𝑛1 0 𝐶12 𝐶13 𝐶14 𝐶15

𝑛2 0 0 0 𝐶24 𝐶25

𝑛3 0 0 0 0 𝐶35

𝑛4 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(5)

where 𝐴13, 𝐴24, 𝐴34, 𝐵44, and 𝐶12 are nonsingular and upper triangular; 𝐵23 and 𝐶24 are square and
upper triangular; and 𝐵12 and 𝐶35 are upper trapezoidal with 𝑝1 ≥ 𝑚2 and 𝑛3 ≤ 𝑞5, respectively. Here,
upper trapezoidal with the given dimensions means that 𝐵12 and 𝐶35 are structured as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× · · · ×
...

...

× · · · ×
. . .

...

×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎢⎣
× · · · × · · · ×

. . .
...

...

× · · · ×

⎤⎥⎥⎥⎥⎥⎥⎦ ,
respectively. Furthermore, the matrices 𝐴24, 𝐵23, and 𝐶24 are such that 𝐶24𝐴

−1
24 𝐵23 = Σ, where Σ is

diagonal with nonnegative entries.

Proof. The structure of the matrices 𝑃𝑇𝐴𝑄, 𝑃𝑇𝐵𝑈, and 𝑉𝑇𝐶𝑄 follows from the preprocessing phase
from Section 3. For the claim that 𝐶24𝐴

−1
24 𝐵23 = Σ, we can use the following limit argument.

Suppose that ˆ︁𝑃, ˆ︁𝑄, ˆ︁𝑈, and ˆ︁𝑉 are such that ˆ︁𝑃𝑇𝐴ˆ︁𝑄, ˆ︁𝑃𝑇𝐵ˆ︁𝑈, and ˆ︁𝑉𝑇𝐶ˆ︁𝑄 have the structure from (3)–
(4), but that 𝐶24𝐴

−1
24 𝐵23 is not yet diagonal. Then let {𝐵𝑘} be a bounded sequence of nonsingular

upper-triangular matrices that converge to 𝐵23. For each 𝑘, let ˜︁𝑉𝑇𝑘 (𝐶24𝐴
−1
24 𝐵𝑘)˜︁𝑈𝑘 = Σ𝑘 be an SVD of

𝐶24𝐴
−1
24 𝐵𝑘. Furthermore, let ˜︁𝑃𝑘 and ˜︁𝑄𝑘 be orthonormal matrices such that ˜︁𝑃𝑇

𝑘
𝐵𝑘˜︁𝑈𝑘 and ˜︁𝑃𝑇

𝑘
𝐴23˜︁𝑄𝑘 are

upper triangular, respectively. Then 𝐶24 = Σ𝑘 (˜︁𝑃𝑇𝑘 𝐵𝑘˜︁𝑈𝑘)−1(˜︁𝑃𝑇
𝑘
𝐴24˜︁𝑄𝑘) is also upper triangular. Using

5

the Bolzano–Weierstrass theorem, we know that the bounded sequence {(˜︁𝑃𝑘, ˜︁𝑄𝑘,˜︁𝑈𝑘,˜︁𝑉𝑘, Σ𝑘)} has a
converging subsequence

lim
𝑖→∞

(˜︁𝑃𝑘𝑖 , ˜︁𝑄𝑘𝑖 ,˜︁𝑈𝑘𝑖 ,˜︁𝑉𝑘𝑖 , Σ𝑘𝑖) = (˜︁𝑃, ˜︁𝑄,˜︁𝑈,˜︁𝑉, Σ).
It is easy to show that ˜︁𝑃, ˜︁𝑄, ˜︁𝑈, and ˜︁𝑉 are orthonormal and that ˜︁𝑃𝑇𝐴24˜︁𝑄, ˜︁𝑃𝑇𝐵23˜︁𝑈, and ˜︁𝑉𝑇𝐶24˜︁𝑄 are
upper triangular, and satisfy ˜︁𝑉𝑇𝐶24𝐴

−1
24 𝐵23˜︁𝑈 = Σ, where Σ is a diagonal matrix with nonnegative

entries. Hence, the products

𝑃 = ˆ︁𝑃 diag(𝐼,˜︁𝑃, 𝐼, 𝐼, 𝐼), 𝑈 = ˆ︁𝑈 diag(𝐼, 𝐼,˜︁𝑈, 𝐼),
𝑄 = ˆ︁𝑄 diag(𝐼, 𝐼, 𝐼, ˜︁𝑄, 𝐼), 𝑉 = ˆ︁𝑉 diag(𝐼,˜︁𝑉, 𝐼, 𝐼),

are the sought after orthonormal transformations. □

The 𝑃, 𝑄, 𝑈, 𝑉, 𝑝𝑖, 𝑞𝑖, 𝑚𝑖, and 𝑛𝑖 from the above theorem are not necessarily equal to their
counterparts from Theorem 1 and Corollary 4. The main benefit of the Schur-form RSVD is that
we can compute it with only orthonormal transformations and at most three rank decisions, while
we can still use it to compute, e.g., 𝐶𝐴†𝐵 and the RSVs. The computation of the Schur form is the
subject of later sections, but to see how we can use it, consider the following proposition first.

Proposition 8. Let 𝐴, 𝐵, 𝐶, 𝑃, 𝑄, 𝑈, and 𝑉 be as in Theorem 7; then there exist nonsingular upper-
triangular matrices 𝑆 and 𝑇 so that 𝑆−1(𝑃𝑇𝐴𝑄)𝑇−1, 𝑆−1(𝑃𝑇𝐵𝑈), and (𝑉𝑇𝐶𝑄)𝑇−1 have the form

(6)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 𝐼 0 0
0 0 0 𝐴24 0
0 0 0 0 𝐼

0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 𝐵12 𝐵13 0
0 0 𝐵23 0
0 0 0 0
0 0 0 𝐼

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 𝐼 0 0 0
0 0 0 𝐶24 𝐶25

0 0 0 0 𝐶35

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

respectively.

Proof. Let

(7) 𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼 1
2 𝐴15 𝐵14

𝐼 𝐴25 𝐵24

𝐴35 𝐵34

𝐵44

𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and 𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼

𝐶12 𝐶13 𝐶14 𝐶15

𝐴13 𝐴14
1
2 𝐴15

𝐼

𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

then direct verification concludes the proof. □

Now, with the Schur-form RSVD and Proposition 8, we see that

𝑉𝑇𝐶𝐴†𝐵𝑈 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0
0 𝐶24𝐴

−1
24 𝐵23 0 0

0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0
0 Σ 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
6

is indeed easily determined. Likewise, if 𝐷 is a 4 × 4 block matrix of compatible dimensions, then

rank(𝐴 + 𝐵𝐷𝐶) = rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 × 𝐼 × ×
0 𝐵23𝐷31 0 𝐴24 + 𝐵23𝐷32𝐶24 ×
0 0 0 0 𝐼

0 𝐷41 0 𝐷42𝐶24 ×
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑝1 + 𝑝3 + rank

(︄[︄
0 𝐴24

0 0

]︄
+

[︄
𝐵23

𝐼

]︄ [︄
𝐷31 𝐷32

𝐷41 𝐷42

]︄ [︄
𝐼

𝐶24

]︄)︄
.

This yields 𝑝1 + 𝑝3 RSVs at ∞, min{𝑝4, 𝑞2} at 0, and 𝑝2 reciprocals from the diagonal elements of
𝐶24𝐴

−1
24 𝐵23 = Σ (where 0−1 = ∞ by convention).

3 The preprocessing phase. Zha’s algorithm for computing the RSVD starts with a preprocessing
phase to extract a triplet (𝐴′, 𝐵′, 𝐶 ′) from a given matrix triplet (𝐴, 𝐵, 𝐶), where 𝐴′ is square and
upper triangular, and 𝐵′ and 𝐶 ′ are nonsingular and upper triangular. The goal of the preprocessing
phase described in this section is similar to Zha’s in that it extracts square and upper triangular
matrices. But unlike Zha’s approach, we only need 𝐴′ to be nonsingular, rather than both 𝐵′ and 𝐶 ′.
Moreover, this triplet should correspond to the nonzero regular RSVs of (𝐴, 𝐵, 𝐶) so that we can
(implicitly) apply the Kogbetliantz iteration to the product 𝐶 ′(𝐴′)−1𝐵′ in the next phase. The result
is a triplet of matrices with the structure from (3)–(5).

Two key procedures in Zha’s preprocessing phase are so called row compressions and column
compressions. For simplicity, we only use the combined action of both compressions, which leads to
the definition below.

Definition 9. Let 𝑀 be a real matrix; then we refer to the URV decomposition 𝑈𝑇𝑀𝑉 =
[︁

0 𝑅
0 0

]︁
as

the compression of 𝑀 if 𝑅 is nonsingular and 𝑈 and 𝑉 are orthonormal matrices.

One way to compress a matrix is to use the SVD, although any rank-revealing URV decomposition
would work. For example, the QR decomposition with column pivoting is a popular and fast
alternative to the SVD in this context. See, e.g., Fierro, Hansen, and Hansen [18] for an overview of
the qualitative differences between different URV decompositions in floating-point arithmetic.

We use compressions, along with other orthonormal transformations, in the preprocessing phase
to compute a sequence of orthonormal matrices 𝑃 (ℓ) , 𝑄 (ℓ) , 𝑈 (ℓ) , and 𝑉 (ℓ) . These matrices are such
that if we start with 𝐴(1) = 𝐴, 𝐵(1) = 𝐵, and 𝐶 (1) = 𝐶, and compute

(8) 𝐴(ℓ+1) = 𝑃 (ℓ)𝑇 𝐴(ℓ)𝑄 (ℓ) , 𝐵(ℓ+1) = 𝑃 (ℓ)𝑇𝐵(ℓ)𝑈 (ℓ) , and 𝐶 (ℓ+1) = 𝑉 (ℓ)𝑇𝐶 (ℓ)𝑄 (ℓ) ;

we will ultimately get partitioned matrices 𝐴(𝑖) , 𝐵(𝑖) , and 𝐶 (𝑖) from which we can take specific blocks
as the sought-after triplet. That is, the matrices 𝐴(𝑖) , 𝐵(𝑖) , 𝐶 (𝑖) have blocks that are square and upper
triangular, with 𝐴(𝑖) nonsingular, that correspond to the nonzero RSVs of (𝐴, 𝐵, 𝐶).

Since partitioned matrices will be important, both in the preprocessing phase and the postpro-
cessing phase, the following implicit notations help to simplify the presentation. First, all blocks
have indices that mark their respective positions in their matrix and are of no further importance.
Second, if 𝑀 is a partitioned matrix and if 𝑀𝑖 𝑗 denotes the block at the 𝑖th block row and 𝑗th block
column, then any transformation of 𝑀𝑖 𝑗 into 𝑋𝑇𝑖𝑖𝑀𝑖 𝑗𝑌𝑗 𝑗 has a corresponding transformation of 𝑀
into 𝑋𝑇𝑀𝑌 . In particular, 𝑋 = diag(𝐼, 𝑋𝑖𝑖, 𝐼) and 𝑌 = diag(𝐼, 𝑌𝑗 𝑗, 𝐼) so that (𝑋𝑇𝑀𝑌) 𝑖 𝑗 = 𝑋𝑇

𝑖𝑖
𝑀𝑖 𝑗𝑌𝑗 𝑗,

unless stated otherwise. Third, the latter notation is understood to work recursively, so that if
𝑀 (ℓ) is a submatrix of 𝑀 (ℓ−1) , then any transformation applied to 𝑀 (ℓ) , or a block of 𝑀 (ℓ) , has a
corresponding transformation applied to 𝑀 (ℓ−1) .

7

Now for the first step of the preprocessing phase, let 𝑃 (1) and 𝑄 (1) compress 𝐴(1) , and take
𝑈 (1) = 𝐼 and 𝑉 (1) = 𝐼, then

𝐴(2) =

[︄
0 𝐴

(2)
12

0 0

]︄
, 𝐵(2) =

[︄
𝐵
(2)
11

𝐵
(2)
21

]︄
, and 𝐶 (2) =

[︂
𝐶
(2)
11 𝐶

(2)
12

]︂
.

Let 𝑃 (2)22 and 𝑈 (2)
11 compress 𝐶 (2)

11 , and let 𝑉 (2)
11 and 𝑄 (2)

11 to compress 𝐵(2)
21 , so that

𝐴(3) =

⎡⎢⎢⎢⎢⎢⎣
0 0 𝐴

(3)
13

0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ , 𝐵(3) =

⎡⎢⎢⎢⎢⎢⎣
𝐵
(3)
11 𝐵

(3)
12

0 𝐵
(3)
22

0 0

⎤⎥⎥⎥⎥⎥⎦ , and 𝐶 (3) =

[︄
0 𝐶

(3)
12 𝐶

(3)
13

0 0 𝐶
(3)
23

]︄
.

The compressions of 𝐴(1) , 𝐵(2)
21 , and 𝐶 (2)

11 contain the only three rank decisions necessary in the
preprocessing phase. Now, by plugging 𝐶 (3) 𝐴(3) †𝐵(3) into Theorem 5, we see that we may focus
on the triplet (𝐴(3)

13 , 𝐵
(3)
11 , 𝐶

(3)
23), where 𝐴

(3)
13 is nonsingular. The matrices 𝐵(3)

11 and 𝐶
(3)
23 are not

necessarily square or upper triangular at this point, so we are not yet finished. For convenience set
𝐴(4) = 𝐴

(3)
13 , 𝐵(4) = 𝐵

(3)
11 , and 𝐶 (4) = 𝐶

(3)
23 , and suppose that 𝐴(4) is 𝑝′ × 𝑝′, 𝐵(4) is 𝑝′ × 𝑚′, and

𝐶 (4) is 𝑛′ × 𝑝′, and let 𝑙 = min{𝑚′, 𝑛′, 𝑝′}. Then there are three possibilities to consider (where the
choice is free when there is overlap).

1. If 𝑚′, 𝑛′ ≥ 𝑝′ = 𝑙, then take 𝑃 (4) = 𝑄 (4) = 𝐼 and 𝐴(5) = 𝐴(4) . Furthermore, use a QR decom-
position to compute 𝑉 (4) such that 𝑉 (4)𝑇𝐶 (4) = [𝐶 (5)

11 ; 0], where 𝐶 (5)
11 is upper triangular;

and use an RQ decomposition2 to compute 𝑈 (4) such that 𝐵(4)𝑈 (4) = [0 𝐵
(5)
12], where 𝐵(5)

12 is
upper triangular. Since[︄

𝐶
(5)
11

0

]︄
(𝐴(5))−1

[︂
0 𝐵

(5)
12

]︂
=

[︄
0 𝐶

(5)
11 (𝐴(5))−1𝐵

(5)
12

0 0

]︄
we see that we can restrict our attention to the triplet (𝐴(5) , 𝐵(5)

12 , 𝐶
(5)
11).

2. If 𝑟 = min{𝑛′, 𝑝′} ≥ 𝑚′ = 𝑙. First use a QR decomposition to compute 𝑃 (4) such that
𝑃 (4)𝑇𝐵(4) = [𝐵(5)

11 ; 0], where 𝐵(5)
11 is an 𝑚′ ×𝑚′ upper-triangular matrix. Next, compute 𝑄 (4)

with an RQ decomposition so that 𝐴(5) = 𝑃 (4)𝑇𝐴(4)𝑄 (4) is upper triangular. Then use a QR
decomposition to compute 𝑉 (4) such that 𝐶 (5) = 𝑉 (4)𝑇𝐶 (4)𝑄 (4) has the form

⎡⎢⎢⎢⎢⎣
𝑚′ 𝑝′ − 𝑚′

𝑚′ 𝐶
(5)
11 𝐶

(5)
12

𝑟 − 𝑚′ 0 𝐶
(5)
22

max{0, 𝑛′ − 𝑟} 0 0

⎤⎥⎥⎥⎥⎦ ,
where 𝐶 (5)

11 is upper triangular and 𝐶 (5)
22 is upper trapezoidal with 𝑟 −𝑚′ ≤ 𝑝′ −𝑚′. Assuming

𝐴(5) is partitioned conformally,

𝐶 (5) (𝐴(5))−1𝐵(5) =

⎡⎢⎢⎢⎢⎢⎣
𝐶
(5)
11 (𝐴(5)

11)−1𝐵
(5)
11

0
0

⎤⎥⎥⎥⎥⎥⎦ ,
2The RQ decomposition of a real 𝑚 × 𝑛 matrix 𝐴 is like a QR decomposition, but with the factors in the opposite

order. That is, if 𝑚 > 𝑛, then 𝐴 = 𝑅𝑄𝑇 for some upper-trapezoidal matrix 𝑅 and some 𝑄 satisfying 𝑄𝑇𝑄 = 𝐼. If 𝑚 ≥ 𝑛,
then 𝐴 = [0 𝑅]𝑄𝑇 or 𝐴 = [𝑅 0]𝑄𝑇 , where 𝑄 is as before and 𝑅 is upper triangular. See, e.g., the routine xGERQF in
LAPACK [2, Sec. 2.4.2.5].

8

which shows that we can restrict our attention to (𝐴(5)
11 , 𝐵

(5)
11 , 𝐶

(5)
11). We can save work if we

just want to compute the restricted singular triplets, because then it suffices to only compute
𝐶
(5)
11 with a QR QR decomposition of the 𝑚′ left-most columns of 𝐶 (4)𝑄 (4) .

3. If 𝑟 = min{𝑚′, 𝑝′} ≥ 𝑛′ = 𝑙. First use an RQ decomposition to compute 𝑄 (4) such that
𝐶 (4)𝑄 (4) = [0 𝐶 (5)

12], where 𝐶 (5)
12 is a 𝑛′ × 𝑛′ upper-triangular matrix. Next, compute 𝑃 (4) such

that 𝐴(5)
14 = 𝑃 (4)𝑇𝐴(4)𝑄 (4) is upper triangular. Then use an RQ decomposition to compute 𝑈 (4)

such that 𝐵(5) = 𝑃 (4)𝑇𝐵(4)𝑈 (4) has the form

[︄ max{0, 𝑚′ − 𝑟} 𝑟 − 𝑛′ 𝑛′

𝑝′ − 𝑛′ 0 𝐵
(5)
12 𝐵

(5)
13

𝑛′ 0 0 𝐵
(5)
23

]︄
,

where 𝐵(5)
23 is upper triangular and 𝐵(5)

12 is upper trapezoidal with 𝑝′ − 𝑛′ ≥ 𝑟 − 𝑛′. Assuming
𝐴(5) is partitioned conformally,

𝐶 (5) (𝐴(5))−1𝐵(5) =
[︂
0 0 𝐶

(5)
12 (𝐴(5)

22)−1𝐵
(5)
23

]︂
,

which shows that we can restrict our attention to (𝐴(5)
22 , 𝐵

(5)
23 , 𝐶

(5)
12). We can save work if we

just want to compute the restricted singular triplets, because then it suffices to only compute
𝐵
(5)
23 with an RQ decomposition of the bottom 𝑛′ rows of 𝑃 (4)𝑇𝐵(4) .

The Schur form from Theorem 7 corresponds to the above three cases with

1. 𝑝1 = 𝑞3 = 0 and 𝑝3 = 𝑞5 = 0 and 𝑚1 = 𝑛4 = 0 (or 𝑚2 = 𝑛3 = 0),

2. 𝑝1 = 𝑞3 = 0 and 𝑚1 = 𝑚2 = 0,

3. 𝑝3 = 𝑞5 = 0 and 𝑛3 = 𝑛4 = 0,

respectively, and 𝑚3 = 𝑛2 = 𝑝2 = 𝑞4 = 𝑙. In principle, we may assume that we always have the first
or second case, because we can transform the input triplet (𝐴, 𝐵, 𝐶) to (Π𝑟𝐴

𝑇Π𝑐,Π𝑟𝐶
𝑇Π𝑐,Π𝑟𝐵

𝑇Π𝑐),
where Π𝑟 and Π𝑐 are the antidiagonal permutation matrices that reverse the order of the rows
and columns. In any case, we can compute the nonzero restricted singular triplets of (𝐴, 𝐵, 𝐶)
from specific square and upper-triangular blocks of 𝐴(5) , 𝐵(5) , and 𝐵(5) , where the block coming
from 𝐴(5) is nonsingular. These three blocks correspond to the 𝐴24, 𝐵23, and 𝐶24 from (3)–(5),
respectively, and have exactly the form we need for the implicit Kogbetliantz iteration described in
the next section.

4 The Kogbetliantz phase.

4.1 The implicit Kogbetliantz method. For a given triplet of upper-triangular 𝑙 × 𝑙 matrices 𝐴, 𝐵,
and 𝐶, where 𝐴 is nonsingular, the goal of the Kogbetliantz phase is to find orthonormal matrices
𝑃, 𝑄, 𝑈, and 𝑉, so that 𝑃𝑇𝐴𝑄, 𝑃𝑇𝐵𝑈, and 𝑉𝑇𝐶𝑄 are upper-triangular and 𝑉𝑇𝐶𝐴−1𝐵𝑈 is diagonal.
The essence of this phase is to implicitly apply a Kogbetliantz-type iteration to 𝑀 = 𝐶𝐴−1𝐵; that
is, to compute the SVD of 𝑀 without forming 𝑀 or computing 𝐴−1. This is different from Zha’s
approach [28], who implicitly applies the iteration to the product 𝐵−1𝐴𝐶−1. A description of the
new procedure follows below; for more background and details see, e.g., Bai and Demmel [4],
Charlier, Vanbegin, and Van Dooren [7], Forsythe and Henrici [19], Hansen [21], Heath et al. [22],
Paige [26], and Zha [29], and their references.

9

The implicit Kogbetliantz method iterates over pairs (𝑖, 𝑗) with 𝑖 < 𝑗 ≤ 𝑙, and for each pair
applies rotations to the 𝑖th and 𝑗th rows and columns of 𝐴, 𝐵, and 𝐶. This is done in such a way
that 𝑎𝑖 𝑗, 𝑏𝑖 𝑗, 𝑐𝑖 𝑗, and also 𝑚𝑖 𝑗 become zero, while the corresponding (𝑗, 𝑖)th elements (may) become
nonzero. We refer to this as annihilating the (𝑖, 𝑗)th elements. A sequence of iterations over all
𝑛(𝑛 − 1)/2 pairs (𝑖, 𝑗) is called a cycle, and a cycle can progress through the pairs in different
orderings. Some of these orderings, but not all, are proven to lead to converging methods [21].
That is, 𝑀 converges to a diagonal matrix after sufficiently many cycles. A common ordering, and
the one that we will focus on, is the row-cyclic ordering (1, 2), (1, 3), . . . , (1, 𝑙), (2, 3), (2, 4), . . . ,
(𝑙 − 1, 𝑙). A row sweep is what we call a series of transformations that annihilate all the off-diagonal
elements in a single row. During a cycle of sweeps in a row-cyclic ordering, the 𝑖th row sweep
produces fill-in in the 𝑖th column, so that a full cycle turns the initially upper-triangular matrices
into lower-triangular matrices. In the following cycle, we effectively consider the triplet (𝐴𝑇 , 𝐶𝑇 , 𝐵𝑇)
as the input, which recovers the upper-triangular structure of the matrices. This leads to a sequence
of alternating odd and even cycles that we repeat either until convergence, or until we reach a
predefined maximum number of cycles.

To see how we can implicitly work with 𝑀, suppose that (𝑖, 𝑗) is our pivot and that we want to
annihilate 𝑚𝑖 𝑗. At this point in a cycle with row-cyclic ordering, 𝐴 and 𝐴−1 have the form

𝐴 =

⎡⎢⎢⎢⎢⎣
𝑖 − 1 𝑗 − 𝑖 + 1 𝑙 − 𝑗

𝑖 − 1 𝐴11 0 0
𝑗 − 𝑖 + 1 𝐴21 𝐴22 𝐴23
𝑙 − 𝑗 𝐴31 0 𝐴33

⎤⎥⎥⎥⎥⎦ and 𝐴−1 =

⎡⎢⎢⎢⎢⎢⎣
𝐴−1

11 0 0˜︁𝐴21 𝐴−1
22

˜︁𝐴23˜︁𝐴31 0 𝐴−1
33

⎤⎥⎥⎥⎥⎥⎦
for appropriate ˜︁𝐴21, ˜︁𝐴31, ˜︁𝐴23, where 𝐴11 is lower triangular and 𝐴33 upper triangular. Furthermore,
for some vector 𝒂 with 𝒆𝑇

𝑗−𝑖𝒂 = 0 and upper-triangular 𝑅𝐴 with 𝒆𝑇
𝑗−𝑖𝑅𝐴 = 𝑎 𝑗 𝑗𝒆𝑇𝑗−𝑖, we have that

𝐴22 =

[︄
𝑎𝑖𝑖 𝑎𝑖 𝑗𝒆𝑇𝑗−𝑖
𝒂 𝑅𝐴

]︄
and 𝐴−1

22 =
1

𝑎𝑖𝑖𝑎 𝑗 𝑗

[︄
𝑎 𝑗 𝑗 −𝑎𝑖 𝑗𝒆𝑇𝑗−𝑖

−𝑎 𝑗 𝑗𝑅−1
𝐴 𝒂 𝑎𝑖𝑖𝑎 𝑗 𝑗𝑅

−1
𝐴 + 𝑎𝑖 𝑗𝑅−1

𝐴 𝒂𝒆𝑇
𝑗−𝑖

]︄
.

Since 𝐵 and 𝐶 have the same structure as 𝐴, we can partition their blocks identically and use a
similar notation for the blocks 𝐵22 and 𝐶22. If we now ignore the previous subscript indices of the
matrix blocks and define 𝑀𝑖 𝑗 =

[︂
𝑚𝑖𝑖 𝑚𝑖 𝑗

0 𝑚 𝑗 𝑗

]︂
and 𝐴𝑖 𝑗, 𝐵𝑖 𝑗, and 𝐶𝑖 𝑗 likewise, then we can check that

𝑀𝑖 𝑗 =
1

𝑎𝑖𝑖𝑎 𝑗 𝑗

[︄
𝑐𝑖𝑖 𝑐𝑖 𝑗𝒆𝑇𝑗−𝑖
0 𝑐 𝑗 𝑗𝒆𝑇𝑗−𝑖

]︄ [︄
𝑎 𝑗 𝑗 −𝑎𝑖 𝑗𝒆𝑇𝑗−𝑖

−𝑎 𝑗 𝑗𝑅−1
𝐴 𝒂 𝑎𝑖𝑖𝑎 𝑗 𝑗𝑅

−1
𝐴 + 𝑎𝑖 𝑗𝑅−1

𝐴 𝒂𝒆𝑇
𝑗−𝑖

]︄ [︄
𝑏𝑖𝑖 𝑏𝑖 𝑗

𝒃 𝑅𝐵𝒆 𝑗−𝑖

]︄
=

1
𝑎𝑖𝑖𝑎 𝑗 𝑗

[︄
𝑐𝑖𝑖𝑎 𝑗 𝑗𝑏𝑖𝑖 𝑐𝑖𝑖𝑎 𝑗 𝑗𝑏𝑖 𝑗 + (𝑐𝑖 𝑗𝑎𝑖𝑖 − 𝑐𝑖𝑖𝑎𝑖 𝑗)𝑏 𝑗 𝑗

0 𝑐 𝑗 𝑗𝑎𝑖𝑖𝑏 𝑗 𝑗

]︄
= 𝐶𝑖 𝑗𝐴

−1
𝑖 𝑗 𝐵𝑖 𝑗.

We can even replace the inverse 𝐴−1
𝑖 𝑗

by the adjugate matrix adj(𝐴𝑖 𝑗), because the scaling of 𝑀𝑖 𝑗

does not matter when computing the rotations. Thus, we will henceforth define

(9) 𝑀𝑖 𝑗 = 𝐶𝑖 𝑗 adj(𝐴𝑖 𝑗)𝐵𝑖 𝑗 =
[︃
𝑐𝑖𝑖 𝑐𝑖 𝑗

0 𝑐 𝑗 𝑗

]︃ [︃
𝑎 𝑗 𝑗 −𝑎𝑖 𝑗
0 𝑎𝑖𝑖

]︃ [︃
𝑏𝑖𝑖 𝑏𝑖 𝑗

0 𝑏 𝑗 𝑗

]︃
,

while stressing that this definition is only correct when annihilating 𝑚𝑖 𝑗.
Computing 𝑀𝑖 𝑗 is the first step to computing the rotations that annihilate the (𝑖, 𝑗)th elements.

The second step is to compute an SVD 𝑉𝑇𝑀𝑖 𝑗𝑈 = diag(𝜎1, 𝜎2), where 𝜎1 and 𝜎2 are real, and

10

𝑈 = rot(𝜙) and 𝑉 = rot(𝜓) for appropriate angles 𝜙, 𝜓, and rot(𝜃) denotes the rotation matrix[︁
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
]︁
. This SVDmay be unnormalized, whichmeans that its singular values are not necessarily

nonnegative, nor sorted by magnitude. The next step is to compute rotations 𝑃 and 𝑄 such that
𝑉𝑇𝐶𝑖 𝑗𝑄, 𝑃𝑇𝐴𝑖 𝑗𝑄, 𝑃𝑇𝐵𝑖 𝑗𝑈 are lower triangular. For the final step, let 𝑃𝑖 𝑗, 𝑄𝑖 𝑗, 𝑈𝑖 𝑗, and 𝑉𝑖 𝑗 be identity
matrices with the (𝑖, 𝑖), (𝑖, 𝑗), (𝑗, 𝑖), and (𝑗, 𝑗) elements replaced by the (1, 1), (1, 2), (2, 1), and
(2, 2) elements of 𝑃, 𝑄, 𝑈, and 𝑉, respectively, and compute the transformations 𝑃𝑇

𝑖 𝑗
𝐴𝑄𝑖 𝑗, 𝑃𝑇𝑖 𝑗𝐵𝑈𝑖 𝑗,

and 𝑉𝑇
𝑖 𝑗
𝐶𝑄𝑖 𝑗 as in (8). Accumulating the matrices 𝑃𝑖 𝑗, 𝑄𝑖 𝑗, 𝑈𝑖 𝑗, and 𝑉𝑖 𝑗 is optional, but necessary if

we need the restricted singular vectors. See Algorithm 1 for a summary of the procedure.

Algorithm 1 (An implicit Kogbetliantz iteration for the RSVD).
Input: Square and upper-triangular 𝑙 × 𝑙 matrices 𝐴, 𝐵, 𝐶, and 𝐴 nonsingular.
Output: 𝑃, 𝑄, 𝑈, 𝑉, 𝐴′, 𝐵′, and 𝐶 ′ such that 𝐴′ = 𝑃𝑇𝐴𝑄, 𝐵′ = 𝑃𝑇𝐵𝑈, and 𝐶 ′ = 𝑉𝑇𝐶𝑄 are upper
triangular and 𝑉𝑇𝐶𝐴−1𝐵𝑈 is diagonal.
1. while # cycles is odd or (# cycles < max cycles and not converged) do
2. for 𝑖 = 1, 2, . . . , 𝑙 − 1 do
3. for 𝑗 = 𝑖 + 1, 𝑖 + 2, . . . , 𝑙 do
4. Select 𝐴𝑖 𝑗, 𝐵𝑖 𝑗, and 𝐶𝑖 𝑗 as outlined in the text.
5. In odd cycles: set (𝐴𝑖 𝑗, 𝐵𝑖 𝑗, 𝐶𝑖 𝑗) = (𝐴𝑇

𝑖 𝑗
, 𝐶𝑇

𝑖 𝑗
, 𝐵𝑇

𝑖 𝑗
).

6. Compute 𝑃𝑖 𝑗, 𝑄𝑖 𝑗, 𝑈𝑖 𝑗, and 𝑉𝑖 𝑗 from 𝐴𝑖 𝑗, 𝐵𝑖 𝑗, and 𝐶𝑖 𝑗.
7. In odd cycles: swap 𝑃𝑖 𝑗 with 𝑄𝑖 𝑗 and 𝑈𝑖 𝑗 with 𝑉𝑖 𝑗.
8. Update 𝐴 = 𝑃𝑇

𝑖 𝑗
𝐴𝑄𝑖 𝑗, 𝐵 = 𝑃𝑇

𝑖 𝑗
𝐵𝑈𝑖 𝑗, 𝐶 = 𝑉𝑇

𝑖 𝑗
𝐶𝑄𝑖 𝑗.

9. Accumulate 𝑃 = 𝑃𝑃𝑖 𝑗, 𝑄 = 𝑄𝑄𝑖 𝑗, 𝑈 = 𝑈𝑈𝑖 𝑗, and 𝑉 = 𝑉𝑉𝑖 𝑗.

Forsythe and Henrici [19] prove that row-cyclic sweeps lead to (fast) convergence when a fixed
closed interval within (−𝜋/2, 𝜋/2) contains all angles 𝜙 and 𝜓. Since this condition is impossible to
guarantee while simultaneously diagonalizing 𝑀𝑖 𝑗 exactly, Forsythe and Henrici also prove that a set
of weaker requirements suffice for linear convergence. The benefit of these weaker requirements is
that they are almost always satisfied in floating-point arithmetic. In any case, Heath et al. [22, Sec. 3]
argue for the use of an unnormalized SVD as it simplifies the algorithm and they found it to be just
as effective. This observation relies on the fact that Forsythe and Henrici’s convergence proof only
considers the magnitude of the matrix entries. In practical term this means that we may work with
−𝑈 or −𝑉 instead of 𝑈 and 𝑉, and thus, also with half period shifts and angles in a fixed closed
interval of (𝜋/2, 3/2𝜋). In other words, the angles just need to stay away from an open interval
around ±𝜋/2.

Still, Brent, Luk, and Van Loan [6, Sec. 4] conjecture “that the smaller the rotation angles are
the faster the procedure will converge”. One way to adjust the angles is with a quarter period shift;
that is, by replacing 𝑈 and 𝑉 with 𝑈𝐽 and 𝑉𝐽, respectively, where 𝐽 = rot(𝜋/2) =

[︁
0 1

−1 0
]︁
. For

example, the routine xLAGS2 of the current version of LAPACK3 compute the upper-triangular 2 × 2
SVDs with xLASV2, and ensures that min{|𝜙|, |𝜓|} ≤ 𝜋/4 in essence by multiplying 𝑈 and 𝑉 with
𝐽 if |𝑢11 | < |𝑢12 | or |𝑣11 | < |𝑣12 |. Since this condition appears suboptimal if, say, |𝑢11 | > |𝑢12 | and
|𝑣11 | < |𝑣12 |, we will instead try to minimize the maximum angle. That is, we will replace 𝑈 and
𝑉 with 𝑈𝐽 and 𝑉𝐽, respectively, if and only if max{|𝑢11 |, |𝑣11 |} < max{|𝑢12 |, |𝑣12 |}. This strategy
ensures that we both have max{|𝑢11 |, |𝑣11 |} ≥ 1/

√
2 and max{|𝑢11 |, |𝑣11 |} ≥ max{|𝑢12 |, |𝑣12 |},

although a downside is that we cannot always guarantee a particular ordering of the singular values
during the cycles. However, this can also not be guaranteed with other conditions that stay away
from the rotation angles ±𝜋/2.

A standard approach to check for convergence is to define 𝜌𝑖 𝑗 = 0 if 𝑀𝑖 𝑗 = 0 and 𝜌𝑖 𝑗 =

|𝑚𝑖 𝑗 |/∥𝑀𝑖 𝑗∥max ≤ 1 otherwise, and to stop if all 𝜌𝑖 𝑗 < 𝜏 for some tolerance 𝜏. Another option,
suggested by Demmel and Veselić [13], is to use 𝜌𝑖 𝑗 = |𝑚𝑖 𝑗 | (|𝑚𝑖𝑖 | |𝑚 𝑗 𝑗 |)−1/2 ≤ ∞ (if 𝑀𝑖 𝑗 ≠ 0)

3Version 3.8.0 at the time of writing.

11

instead. The problem for implicit Kogbetliantz-type iterations with both of these definitions of 𝜌𝑖 𝑗,
is that |𝑚𝑖 𝑗 | may not become “small” enough in floating-point arithmetic for the stopping criterion
to be fulfilled. This unfortunate discrepancy between theory and practice exists, at least in part,
because the implicit Kogbetliantz method forms each 𝑀𝑖 𝑗 on-the-fly. This means that the relative
error in the computed |𝑚𝑖 𝑗 | can be of order O(𝝐∥𝐴𝑖 𝑗∥∥𝐵𝑖 𝑗∥∥𝐶𝑖 𝑗∥), where 𝝐 is the unit roundoff,
rather than O(𝝐∥𝑀𝑖 𝑗∥), even if the former is often pessimistic. Hence, a 𝜏 picked based on the
former may be too large, and a 𝜏 picked based on the latter may be too small. This does not even
take other sources of roundoff errors into account yet, such as, for example, perturbations in the
computed rotations and the roundoff errors from the application of the rotations.

Bai and Demmel [4, Sec. 4] use a different approach and measure the parallelism between
corresponding rows of two matrices 𝐴 and 𝐵. The theoretical justification is simple: when all
corresponding rows of 𝐴 and 𝐵 are parallel, then there must exist diagonal matrices 𝐶 and 𝑆 and an
upper-triangular matrix 𝑅 such that 𝐴 = 𝐶𝑅 and 𝐵 = 𝑆𝑅. This justification and the corresponding
implementation are appealing, but the generalization to matrix triplets and the RSVD is not obvious.
A simplified approach without a similar theoretical justification is to consider the angle between
two-dimensional vectors and if 𝑚𝑖 𝑗 ≠ 0 to take

(10) 𝜌𝑖 𝑗 = max
{︃ |𝒆𝑇1𝐶𝑖 𝑗 adj(𝐴𝑖 𝑗)𝐵𝑖 𝑗𝒆2 |
∥𝒆𝑇1𝐶𝑖 𝑗∥∥ adj(𝐴𝑖 𝑗)𝐵𝑖 𝑗𝒆2∥

,
|𝒆𝑇1𝐶𝑖 𝑗 adj(𝐴𝑖 𝑗)𝐵𝑖 𝑗𝒆2 |

∥𝒆𝑇1𝐶𝑖 𝑗 adj(𝐴𝑖 𝑗)∥∥𝐵𝑖 𝑗𝒆2∥

}︃
for each pair of 𝑖 and 𝑗. Although the relative scaling is still not ideal because the roundoff errors
in |𝑚𝑖 𝑗 | may be as big as O(𝝐∥𝒆𝑇1𝐶𝑖 𝑗∥∥𝐴𝑖 𝑗∥∥𝐵𝑖 𝑗𝒆2∥), this 𝜌𝑖 𝑗 strikes a balance that appears to work
well in our limited testing.

Regardless of the choice of 𝜌𝑖 𝑗, we may want to stop iterating before convergence when progress
is too slow and before reaching a predefined maximum number of cycles. To decide on this, one
option is to compute 𝜌 = max𝑖, 𝑗 𝜌𝑖 𝑗 during each cycle, let 𝜌min be the smallest 𝜌 of all previous
cycles, and stop iterating (after an even number of cycles) if (after an even number of cycles) if
𝜌min ≲ 𝜌 ≪ 1. That is, stop when both 𝜌 and the improvement between cycles are small.

4.2 The 2-by-2 RSVD in exact arithmetic. Algorithm 1 does not tell us how to compute the RSVD
of (upper-)triangular 2-by-2 matrices. But this is an easier problem to solve than computing the
RSVD of larger matrices. See, for example, the theorem below.

Proposition 10. Let 𝐴, 𝐵, and 𝐶 be arbitrary 2 × 2 upper-triangular matrices, and define 𝑀 =

𝐶 adj(𝐴)𝐵; then there exist orthonormal matrices 𝑃, 𝑄, 𝑈, and 𝑉, such that 𝑃𝑇𝐴𝑄, 𝑃𝑇𝐵𝑈, and 𝑉𝑇𝐶𝑄
are lower triangular, and 𝑉𝑇𝑀𝑈 = Σ is diagonal.

Proof. If any two of the three matrices 𝐴, 𝐵, and 𝐶 are nonsingular, then the result is straightforward.
For example, if 𝐵 and 𝐶 are nonsingular, then we can find 𝑈 and 𝑉 by computing the SVD of
𝑀, and letting 𝑃 and 𝑄 zero the (1, 2) entries of 𝐵𝑈 and 𝑉𝑇𝐶, respectively. Then 𝑄𝑇adj(𝐴)𝑃 =

(𝑉𝑇𝐶𝑄)−1Σ(𝑃𝑇𝐵𝑈)−1 and it follows that 𝑃𝑇𝐴𝑄 must be lower triangular. By noting that adj(𝐴) is
nonsingular if and only if 𝐴 is nonsingular, we see that similar arguments hold when 𝐴 and 𝐵 are
nonsingular or when 𝐴 and 𝐶 are nonsingular.

If 𝐵 is singular and 𝐴 and 𝐶 are arbitrary, we can compute 𝑃 and 𝑈 such that 𝑃𝑇𝐵𝑈 has the form[︁
0 0
0 ×

]︁
, compute 𝑄 so that 𝑃𝑇𝐴𝑄 is lower triangular, and compute 𝑉 so that 𝑉𝑇𝐶𝑄 is lower triangular.

By using the fact that adj(𝑃𝑇𝐴𝑄) is a scalar multiple of 𝑃𝑇 adj(𝐴)𝑄, we then see that 𝑉𝑇𝑀𝑈 is a
scalar multiple of (𝑉𝑇𝐶𝑄) · adj(𝑃𝑇𝐴𝑄) · (𝑃𝑇𝐵𝑈), which is of the form

[︁
0 0
0 ×

]︁
.

If 𝐶 is singular and 𝐴 and 𝐵 are arbitrary, we can compute 𝑉 and 𝑄 such that 𝑉𝑇𝐶𝑄 is of the form[︁ × 0
0 0

]︁
, compute 𝑃 so that 𝑃𝑇𝐴𝑄 is lower triangular, and compute 𝑈 so that 𝑃𝑇𝐵𝑈 is lower triangular.

Then 𝑉𝑇𝑀𝑈 is a scalar multiple of (𝑉𝑇𝐶𝑄) · adj(𝑃𝑇𝐴𝑄) · (𝑃𝑇𝐵𝑈), which is of the form
[︁ × 0

0 0
]︁
. □

12

The theorem above does not tell us anything about the angles of the rotations, nor about the
numerical stability of the computations. Rather, the theorem shows that computing the 2 × 2 RSVD
is possible for any triplet of upper-triangular matrices, even when 𝐴 is singular. Knowing what is
possible, the question that remains is how to do it in a numerically sound way.

Bojanczyk et al. [5] propose a recursive algorithm for accurately computing the SVD of a product
of three upper-triangular 2 × 2 matrices that is close to the 2 × 2 RSVD needed for Algorithm 1.
But their diagonalization is not guaranteed to have high relative accuracy, as demonstrated by Bai
and Demmel [4] for the QSVD. Adams, Bojanczyk, and Luk address this issue for the product of
two matrices in [1] with a modified version of their algorithm that they call “half-recursive”, and
which they show is related to Bai and Demmel’s algorithm in exact arithmetic. Though, they did not
provide an improved version of their algorithm for the product of three matrices.

We can generalize Bai and Demmel’s algorithm for the 2 × 2 QSVD to the 2 × 2 RSVD, as shown
below in Algorithm 2. Informally, the idea of the algorithm is to apply a modified version of Bai
and Demmel’s GSVD22 to the pairs (𝐶, adj(𝐴)𝐵) and (𝐶 adj(𝐴), 𝐵), but some of the details require
further attention. For example, what to do when 𝑐11 = 𝑏22 = 0, and when to replace 𝑈 and 𝑉 by 𝑈𝐽
and 𝑉𝐽. For the latter in particular, there are qualitative differences between postmultiplying by
𝐽 when 𝑐max < 𝑠max or when 𝑐max ≤ 𝑠max if 𝐵 or 𝐶 are singular, and the choice between the two
conditions is not obvious. The condition we ultimately use in the algorithm below ensures that
Lemma 11 and Lemma 21 hold.

Algorithm 2 (2 × 2 upper-triangular RSVD (RSVD22)).
Input: 2 × 2 upper-triangular matrices 𝐴, 𝐵, and 𝐶, with 𝐴 nonsingular.
Output:Orthonormal matrices 𝑃, 𝑄,𝑈, and 𝑉, and lower-triangular matrices 𝐴′ = 𝑃𝑇𝐴𝑄, 𝐵′ = 𝑃𝑇𝐵𝑈,
and 𝐶 ′ = 𝑉𝑇𝐶𝑄, such that 𝐶 ′ adj(𝐴′)𝐵′ is diagonal.
1. if 𝑐11 = 0 and 𝑏22 = 0 then
2. Compute 𝑉 such that (𝑉𝑇𝐶)22 = 0 and let 𝑄 = 𝐽.
3. Compute 𝑈 such that (𝐵𝑈)11 = 0 and let 𝑃 = 𝐽.
4. Let 𝐴′ = 𝑃𝑇𝐴𝑄, 𝐵′ = 𝑃𝑇𝐵𝑈, 𝐶 ′ = 𝑉𝑇𝐶𝑄, and 𝑏′21 = 𝑐′21 = 0.
5. return
6. endif
7. Use xLASV2 to compute 𝑀 = 𝑉Σ𝑈𝑇 , where 𝑀 = 𝐶 adj(𝐴)𝐵.
8. Define 𝑐max = max{|𝑢11 |, |𝑣11 |} and 𝑠max = max{|𝑢12 |, |𝑣12 |}.
9. if 𝑐11 ≠ 0 and 𝑐22 ≠ 0 and 𝑏11 ≠ 0 and 𝑏22 ≠ 0 and 𝑐max < 𝑠max then

10. Let 𝑈 = 𝑈𝐽 and 𝑉 = 𝑉𝐽.
11. endif
12. Let 𝐺 = 𝑉𝑇𝐶 and (optionally; see text) set 𝑔22 to zero if 𝑐11 = 0.
13. Let 𝐿 = 𝐵𝑈 and (optionally; see text) set 𝑙12 to zero if 𝑏22 = 0.
14. Let ˆ︁𝐺 = |𝑉 |𝑇 |𝐶 |, 𝐻 = adj(𝐴)𝐿, and ˆ︁𝐻 = | adj(𝐴) | |𝐵| |𝑈 |.
15. Let 𝐾 = 𝐺 adj(𝐴), ˆ︁𝐾 = |𝑉 |𝑇 |𝐶 | | adj(𝐴) |, and ˆ︁𝐿 = |𝐵| |𝑈 |.
16. Let 𝜂𝑔 = (ˆ︁𝑔11 +ˆ︁𝑔12)/(|𝑔11 | + |𝑔12 |) and 𝜂ℎ = (ˆ︁ℎ12 +ˆ︁ℎ22)/(|ℎ12 | + |ℎ22 |).
17. Let 𝜂𝑘 = (ˆ︁𝑘11 + ˆ︁𝑘12)/(|𝑘11 | + |𝑘12 |) and 𝜂𝑙 = (ˆ︁𝑙12 +ˆ︁𝑙22)/(|𝑙12 | + |𝑙22 |).
18. if |ℎ12 | + |ℎ22 | = 0 or (|𝑔11 | + |𝑔12 | ≠ 0 and 𝜂𝑔 ≤ 𝜂ℎ) then
19. Use xLARTG to compute 𝑄 such that 𝐺𝑄 is lower triangular.
20. else
21. Use xLARTG to compute 𝑄 such that 𝑄𝑇𝐻 is lower triangular.
22. endif
23. if |𝑘11 | + |𝑘12 | = 0 or (|𝑙12 | + |𝑙22 | ≠ 0 and 𝜂𝑙 ≤ 𝜂𝑘) then
24. Use xLARTG to compute 𝑃 such that 𝑃𝑇 𝐿 is lower triangular.
25. else
26. Use xLARTG to compute 𝑃 such that 𝐾𝑃 is lower triangular.

13

27. endif
28. Let 𝐴′ = 𝑃𝑇𝐴𝑄, 𝐵′ = 𝑃𝑇 𝐿, 𝐶 ′ = 𝐺𝑄, and 𝑎′12 = 𝑏′12 = 𝑐′12 = 0.

Since 𝐵 and 𝐶 can be singular, there may be zeros on their diagonals. If this is the case, and if
the factors 𝑋 and 𝑌 from Theorem 1 or the factors 𝑆 and 𝑇 from Corollary 4 are desired, then we
need to know the nonzero structure of 𝐵 and 𝐶 after convergence. Paige [26, Sec. 5] describes the
nonzero structure for the QSVD in a similar case, and has a proof which is, in his own words, “hard
going”. The proof for the RSVD is tedious also, and is split into two parts. The first part is a lemma
that gives the output of RSVD22 for a given input, and the second part is a proposition that uses
the lemma to prove what kind of nonzero structure we get for the RSVD after a series of cycles.

In principle, we have to consider a total of 25 different cases when investigating the nonzero
structure of the outputs of Algorithm 2. For 𝐵 alone, for instance, we must already consider the
following five cases:[︄

𝑏11 𝑏12

0 𝑏22

]︄
,

[︄
𝑏11 𝑏12

0 0

]︄
,

[︄
0 𝑏12

0 𝑏22

]︄
,

[︄
0 𝑏12

0 0

]︄
, and

[︄
0 0
0 0

]︄
,

where the underlined entries are nonzero. Fortunately, we can treat some of the 25 cases simultane-
ously and reduce them to 13 cases.

Lemma 11. Let 𝐴, 𝐵, and 𝐶 be upper-triangular 2 × 2 matrices, and suppose that 𝐴 is nonsingular. If
the SVD in Algorithm 2 computes 𝑈 = 𝑉 = 𝐼 whenever 𝑀 = 0, and is such that |𝜎1 | ≥ |𝜎2 |; then the
cases given below describe the output of Algorithm 2. Each case shows (in sequence) the structure of
the input matrices 𝐵 and 𝐶 (𝐴 is always upper triangular with nonzero diagonal entries), the matrix
𝑀 = 𝐶 adj(𝐴)𝐵, and the output matrices 𝐵′ and 𝐶 ′ (𝐴′ is always lower triangular with nonzero
diagonal entries). Each case also shows 𝑃, 𝑄, 𝑈, and 𝑉 when they take specific values. Furthermore,
underlined matrix entries are nonzero.

1.
[︂
𝑐11 𝑐12
0 𝑐22

]︂
,
[︂
𝑏11 𝑏12
0 𝑏22

]︂
,
[︂
𝑚11 𝑚12

0 𝑚22

]︂
,
[︃
𝑐′11 0
𝑐′21 𝑐′22

]︃
,
[︃
𝑏′11 0
𝑏′21 𝑏′22

]︃
.

2.
[︁ 0 𝑐12

0 𝑐22

]︁
,
[︁
𝑏11 𝑏12
0 0

]︁
, 0,

[︂
𝑐′11 0
0 0

]︂
,
[︂

0 0
0 𝑏′22

]︂
, 𝑃 = 𝑄 = 𝐽.

3.
[︁ 𝑐11 𝑐12

0 0

]︁
,
[︁

0 0
0 0

]︁
, 0,

[︂
𝑐′11 0
0 0

]︂
,
[︁

0 0
0 0

]︁
, 𝑈 = 𝑉 = 𝐼.

4.
[︂
𝑐11 𝑐12
0 𝑐22

]︂
,
[︁

0 0
0 0

]︁
, 0,

[︃
𝑐′11 0
𝑐′21 𝑐′22

]︃
,
[︁

0 0
0 0

]︁
, 𝑈 = 𝑉 = 𝐼.

5.
[︁ 𝑐11 𝑐12

0 0

]︁
,
[︁
𝑏11 𝑏12
0 0

]︁
≠ 0, 𝑐11𝑎22𝐵 ≠ 0,

[︂
𝑐′11 0
0 0

]︂
,
[︂
𝑏′11 0
𝑏′21 0

]︂
, and |𝑉 | = 𝐼.

6.
[︂
𝑐11 𝑐12
0 𝑐22

]︂
,
[︁
𝑏11 𝑏12
0 0

]︁
≠ 0, 𝑐11𝑎22𝐵 ≠ 0,

[︂
𝑐′11 0
𝑐′21 𝑐22

′

]︂
,
[︂
𝑏′11 0
𝑏′21 0

]︂
, and |𝑉 | = 𝐼.

7.
[︁ 𝑐11 𝑐12

0 0

]︁
,
[︂
𝑏11 𝑏12
0 𝑏22

]︂
,
[︁ 𝑚11 𝑚12

0 0

]︁
,
[︂
𝑐′11 0
0 0

]︂
,
[︃
𝑏′11 0
𝑏′21 𝑏′22

]︃
, |𝑈 | ≠ |𝐽 | and |𝑉 | = 𝐼.

8.
[︁

0 0
0 0

]︁
,
[︂

0 𝑏12
0 𝑏22

]︂
, 0,

[︁
0 0
0 0

]︁
,
[︂

0 0
0 𝑏′22

]︂
, 𝑈 = 𝑉 = 𝐼.

9.
[︁

0 0
0 0

]︁
,
[︂
𝑏11 𝑏12
0 𝑏22

]︂
, 0,

[︁
0 0
0 0

]︁
,
[︃
𝑏′11 0
𝑏′21 𝑏′22

]︃
, 𝑈 = 𝑉 = 𝐼.

10.
[︁ 0 𝑐12

0 𝑐22

]︁
≠ 0,

[︂
0 𝑏12
0 𝑏22

]︂
, 𝑎11𝑏22𝐶 ≠ 0,

[︂
𝑐′11 0
0 0

]︂
,
[︂
𝑏′11 0
𝑏′21 0

]︂
, and |𝑃 | = |𝑄 | = |𝑈 | = |𝐽 |.

11.
[︁ 0 𝑐12

0 𝑐22

]︁
≠ 0,

[︂
𝑏11 𝑏12
0 𝑏22

]︂
, 𝑎11𝑏22𝐶 ≠ 0,

[︂
𝑐′11 0
0 0

]︂
,
[︃
𝑏′11 0
𝑏′21 𝑏′22

]︃
, and |𝑃 | = |𝑄 | = |𝑈 | = |𝐽 |.

14

12.
[︂
𝑐11 𝑐12
0 𝑐22

]︂
,
[︂

0 𝑏12
0 𝑏22

]︂
,
[︂

0 𝑚12
0 𝑚22

]︂
,
[︃
𝑐′11 0
𝑐′21 𝑐′22

]︃
,
[︂
𝑏′11 0
𝑏′21 0

]︂
, |𝑈 | = |𝐽 | and |𝑉 | ≠ 𝐼.

13.
[︁ 𝑐11 𝑐12

0 0

]︁
,
[︂

0 𝑏12
0 𝑏22

]︂
,
[︁ 0 𝑚12

0 0
]︁
; if 𝑚12 = 0, then 𝐶 ′ =

[︂
𝑐′11 0
0 0

]︂
and 𝐵′ =

[︂
0 0
0 𝑏′22

]︂
with 𝑈 = 𝑉 = 𝐼. If

𝑚12 ≠ 0, then 𝐶 ′ =
[︂
𝑐′11 0
0 0

]︂
and 𝐵′ =

[︂
𝑏′11 0
𝑏21 0

]︂
with |𝑈 | = |𝐽 | and |𝑉 | = 𝐼.

Proof. Following Algorithm 2 step-by-step for each case yields the desired results; see Appendix A
for details. □

Cases 10, 11, and 12 may violate the min-max–angle condition; however, these cases can no
longer occur in later iterations. This is a consequence of the following proposition, which describes
the nonzero structure of 𝐴, 𝐵, and 𝐶 after an odd and an even cycle. Furthermore, the positions of
the zeros and nonzeros in the output of Lemma 11 are only guaranteed in floating-point arithmetic
with the optional zeroing of 𝑔22 if 𝑐11 = 0 and 𝑙12 if 𝑏22 = 0 in Algorithm 2. Still, the theoretical
results from later sections hold with or without this explicit zeroing; see Section 7.2 for further
discussion.

Proposition 12. Suppose that 𝐴, 𝐵, and 𝐶 are square and upper-triangular 𝑙 × 𝑙 matrices, 𝐴 is
nonsingular, and 𝑀 = 𝐶𝐴−1𝐵 =

[︁
𝑀11 𝑀12

0 0
]︁
, where 𝑀11 is nonsingular and upper triangular. Then a

pair of an odd and even cycle of Algorithm 1, with Algorithm 2 for the 2 × 2 RSVDs, transforms the
structure of 𝐴, 𝐵, and 𝐶 into

(11)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐴11 𝐴12 𝐴13 𝐴14

𝐴22 𝐴23 𝐴24

𝐴33 𝐴34

𝐴44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐵11 𝐵12 𝐵13 𝐵14

𝐵22 𝐵23 𝐵24

0 0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐶11 𝐶12 𝐶13 𝐶14

0 0 𝐶24

0 𝐶34

𝐶44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where all nonzero diagonal blocks are nonsingular and upper triangular.

Proof. Any triplet of 1 × 1 matrices 𝐴, 𝐵, and 𝐶 satisfies (11) when 𝐴 is nonsingular. For larger
matrices, the upper triangularity of the matrices is a result of the row-cyclic cycles. Now, let
kog(𝐴, 𝐵, 𝐶) denote the output of a single odd cycle of Algorithm 1, and let 𝐴(0) = 𝐴, 𝐵(0) = 𝐵, and
𝐶 (0) = 𝐶; then we can write the desired pair of cycles as

(𝐴(0.5) , 𝐵(0.5) , 𝐶 (0.5)) = kog(𝐴(0) , 𝐵(0) , 𝐶 (0)) (𝐴(1) , 𝐵(1) , 𝐶 (1)) = (𝐴(0.5)𝑇 , 𝐶 (0.5)𝑇 , 𝐵(0.5)𝑇)
(𝐴(1.5) , 𝐵(1.5) , 𝐶 (1.5)) = kog(𝐴(1) , 𝐵(1) , 𝐶 (1)) (𝐴(2) , 𝐵(2) , 𝐶 (2)) = (𝐴(1.5)𝑇 , 𝐶 (1.5)𝑇 , 𝐵(1.5)𝑇).

Define 𝑀 (ℓ) = 𝐶 (ℓ) (𝐴(ℓ))−1𝐵(ℓ) for ℓ = 0, 0.5, 1, . . . , 2, and for any 𝑀, 𝑗 > 𝑖, and just before
annihilating 𝑚𝑖 𝑗, define 𝑀𝑖 𝑗 =

[︂
𝑚𝑖𝑖 𝑚𝑖 𝑗

0 𝑚 𝑗 𝑗

]︂
as in (9). Moreover, we assume for the rest of the proof that

the indices 𝑖, 𝑗, and 𝑘 are always such that 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑙.
We start by proving that sweeping the first row of 𝑀 = 𝑀 (0) transforms

𝑀 =

⎡⎢⎢⎢⎢⎢⎣
𝑚11 × ×

0 𝑀22 ×
0 0 0

⎤⎥⎥⎥⎥⎥⎦ into ˜︁𝑀 =

⎡⎢⎢⎢⎢⎢⎣
˜︁𝑚11 0 0
× ˜︁𝑀22 ×
× 0 0

⎤⎥⎥⎥⎥⎥⎦ ,
where 𝑚11 ≠ 0 and ˜︁𝑚11 ≠ 0, and 𝑀22 and ˜︁𝑀22 are nonsingular and upper triangular and not to be
confused with 𝑀𝑖 𝑗. Now suppose that we are about to annihilate 𝑚1 𝑗 for some 𝑗 > 1; then we have
the following.

15

1. If 𝑚11 ≠ 0 and 𝑚 𝑗 𝑗 ≠ 0, then both remain nonzero after annihilating 𝑚1 𝑗. This follows from
Case 1 of Lemma 11. Moreover, the rotations only transform the nonsingular diagonal block
of 𝑀, which preserves the desired block structure.

2. If 𝑚11 ≠ 0 and 𝑚 𝑗 𝑗 = 0, then 𝑚11 stays nonzero and we get |𝑉 | = 𝐼. This follows from Cases 5,
6, and 7 of Lemma 11. Since |𝑉 | = 𝐼, the fact that 𝑚 𝑗𝑘 = 0 for every 𝑘 ≥ 𝑗 remains true after
annihilating 𝑚1 𝑗; that is, the transformations do not introduce nonzeros in row 𝑗.

3. If 𝑚11 = 𝑚 𝑗 𝑗 = 0, then 𝑀 = 0 and 𝑀 is still the zero matrix after annihilating 𝑚1 𝑗.

An induction argument shows that after sweeping the 𝑖th row of 𝑀, the unswept trailing submatrix
starting at the (𝑖 + 1, 𝑖 + 1)th element has a block structure similar to 𝑀 (0) . Moreover, since
𝑀 (1) = 𝑀 (0.5)𝑇 we see that 𝑀 (1) has the same block structure as 𝑀 (0) , and that the same is true for
the structure of 𝑀 (2) .

Next we will prove that after the first cycle

𝐵(0.5) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐵
(0.5)
11

𝐵
(0.5)
21 0
𝐵
(0.5)
31 0 0
𝐵
(0.5)
41 𝐵

(0.5)
42 𝐵

(0.5)
43 𝐵

(0.5)
44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝐵(0.5)
11 and 𝐵

(0.5)
44 are nonsingular. That is, if 𝑏(0.5)

𝑖𝑖
= 𝑏

(0.5)
𝑘𝑘

= 0, then 𝑏(0.5)
𝑗 𝑗

= 𝑏
(0.5)
𝑗𝑖

= 0 for
all 𝑖 ≤ 𝑗 ≤ 𝑘. Now, let us drop the superscript indices as we consider the row-cyclic sweeps that
transform the input 𝐴(0) , 𝐵(0) , 𝐶 (0) , and their corresponding 𝑀 (0) to the output 𝐴(0.5) , 𝐵(0.5) , 𝐶 (0.5) ,
and their corresponding 𝑀 (0.5) . Furthermore, suppose that we have swept 𝑖 − 1 rows, that 𝑖 is such
that 𝑚𝑖𝑖 = 0, and that we are about to annihilate 𝑚𝑖 𝑗 for some 𝑗 > 𝑖.

1. As a result of the structure of 𝑀, we have that 𝑀𝑖 𝑗 = 0 and we cannot have Cases 1, 5, 6, 7,
10, 11, and 12 of Lemma 11. Moreover, Case 13 can only occur with 𝑚𝑖 𝑗 = 0.

2. If 𝑏𝑖𝑖 = 0 or becomes zero after annihilating 𝑚𝑖 𝑗, then 𝑏𝑖𝑖 = 𝑏 𝑗𝑖 = 0. This follows from Cases 2,
3, 4, 8, and 13 of Lemma 11.

3. If 𝑏 𝑗 𝑗 ≠ 0, then 𝑏 𝑗 𝑗 stays nonzero; that is, 𝑏 𝑗 𝑗 stays nonzero at least until the 𝑗th row sweep.
This follows from Cases 8 and 9 of Lemma 11.

4. Suppose that 𝑏𝑖𝑖 ≠ 0 at the start of the 𝑖th row sweep, and that 𝑗 is the first 𝑗 > 𝑖 such that
𝑏 𝑗 𝑗 = 0. Then it follows from Case 2 of Lemma 11 that 𝑏𝑖𝑖 becomes zero and 𝑏 𝑗 𝑗 nonzero after
annihilating 𝑚𝑖 𝑗. When this happens, 𝑏𝑖𝑖 remains zero for the rest of the row sweep, and thus
for the rest of the cycle, and 𝑏 𝑗 𝑗 remains nonzero at least until the 𝑗th row sweep. We have
two possibilities before we annihilate 𝑚𝑖 𝑗 that we must consider. Either 𝑏𝑖0𝑖0 ≠ 0 for every
1 ≤ 𝑖0 < 𝑖, in which case we are done since 𝑏𝑖𝑖 becomes the first zero on the diagonal of 𝐵,
or there exists some 1 ≤ 𝑖0 < 𝑖 such that 𝑏𝑖0𝑖0 = 0. In the latter case, 𝑏𝑖0𝑖0 must have been
zero at the start of the current cycle, or must have become zero before annihilating 𝑏𝑖0 𝑗. This
follows from the previous two points, which imply that the algorithm would otherwise have
made 𝑏 𝑗 𝑗 nonzero when annihilating 𝑏𝑖0 𝑗 during the 𝑖0th row sweep, and that 𝑏 𝑗 𝑗 would have
stayed nonzero at least until the 𝑗th row sweep. Hence, we can conclude that 𝑏 𝑗𝑖0 = 0 before
annihilating 𝑚𝑖 𝑗, and since Case 2 gives |𝑃 | = |𝐽 |, that 𝑏𝑖𝑖0 = 0 after annihilating 𝑚𝑖 𝑗.

5. As a result of the previous point, if 𝑏𝑖𝑖 ≠ 0 after sweeping the 𝑖th row, then 𝑏 𝑗 𝑗 ≠ 0 for all 𝑗 > 𝑖.

16

For the second cycle we need to prove that

𝐶 (1.5) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐶
(1.5)
11

𝐶
(1.5)
21 𝐶

(1.5)
22

𝐶
(1.5)
31 𝐶

(1.5)
32 0

𝐶
(1.5)
41 𝐶

(1.5)
42 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝐶 (1.5)
11 and 𝐶 (1.5)

22 are nonsingular. That is, if 𝑐 (1.5)
𝑖𝑖

= 0, then 𝑐 (1.5)
𝑗 𝑗

= 𝑐
(1.5)
𝑗𝑖

= 0 for all 𝑖 ≤ 𝑗 ≤ 𝑙.

Due to the previous sweeps we may assume that if 𝑐 (1)
𝑖𝑖

= 𝑐
(1)
𝑘𝑘

= 0, then 𝑐
(1)
𝑗 𝑗

= 𝑐
(1)
𝑖 𝑗

= 0 for all
𝑖 ≤ 𝑗 ≤ 𝑘. Now, let us again drop the superscript indices as we consider the matrices during the
row-cyclic sweeps, and suppose that we have swept 𝑖 − 1 rows, that 𝑖 is such that 𝑚𝑖𝑖 = 0, and that
we are about to annihilate 𝑚𝑖 𝑗 for some 𝑗 > 𝑖.

1. As in the previous cycle, we have that 𝑀𝑖 𝑗 = 0 and we cannot have Cases 1, 5, 6, 7, 10, 11,
and 12 of Lemma 11. Moreover, Case 13 can only occur with 𝑚𝑖 𝑗 = 0.

2. If 𝑐𝑖𝑖 ≠ 0 or becomes nonzero when sweeping row 𝑖, then it stays nonzero for the rest of the
sweep. This follows from Cases 3, 4, and 13 of Lemma 11.

3. If 𝑐 𝑗 𝑗 = 0 before annihilating 𝑚𝑖 𝑗, then it stays zero after. Furthermore, no nonzeros are
introduced in the zero blocks of 𝐶. This follows from Cases 2, 3, 8, 9, and 13 of Lemma 11,
while noting that we get |𝑉 | = 𝐼 in each case.

4. If 𝑐𝑖𝑖 = 0, then it becomes nonzero for the smallest integer 𝑘 > 𝑖 such that 𝑐𝑖𝑘 ≠ 0 or 𝑐𝑘𝑘 ≠ 0.
This follows from Case 2 of Lemma 11. Since it holds that 𝑐 𝑗 𝑗 = 𝑐𝑖 𝑗 = 0 for all 𝑖 ≤ 𝑗 < 𝑘 before
annihilating 𝑚𝑖𝑘, and because we get |𝑄 | = |𝐽 |, we must have 𝑐𝑖𝑖 ≠ 0 and 𝑐 𝑗 𝑗 = 𝑐𝑖 𝑗 = 0 for all
𝑖 < 𝑗 ≤ 𝑘 afterwards (note that the inequality symbols are swapped).

5. As a result of the previous point, if 𝑐𝑖𝑖 = 0 after sweeping the 𝑖th row, then 𝑐𝑖 𝑗 = 𝑐 𝑗 𝑗 = 0 for all
𝑗 > 𝑖 and the remaining row sweeps do not introduce nonzeros in column 𝑖 below 𝑐𝑖𝑖. □

The block structure of 𝐴 = 𝑆Σ𝛼𝑇 , 𝐵 = 𝑆Σ𝛽, and 𝐶 = Σ𝛾𝑇 , for some upper-triangular 𝑆 and 𝑇 and
block-diagonal Σ𝛼 = diag(𝐷𝛼, 𝐼, 𝐼, 𝐼), Σ𝛽 = diag(𝐷𝛽, 𝐼, 0, 0), and Σ𝛾 = diag(𝐷𝛾, 0, 0, 𝐼) is

(12)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐴11 𝐴12 𝐴13 𝐴14

𝐴22 𝐴23 𝐴24

𝐴33 𝐴34

𝐴44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐵11 𝐵12 0 0

𝐵22 0 0
0 0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐶11 𝐶12 𝐶13 𝐶14

0 0 0
0 0

𝐶44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the nonzero diagonal blocks are nonsingular. Hence, if we want to compute the factors 𝑆 and
𝑇 , then we must extend the Kogbetliantz phase to turn (11) into (12). The constructive proof of the
proposition below shows how we can do so.

Proposition 13. Let 𝐴, 𝐵, and 𝐶 be structured as in (11), and suppose that 𝐶𝐴−1𝐵 equals
[︁
𝑀11 0

0 0
]︁

for some nonsingular 𝑀11. Then there exists orthonormal matrices 𝑈 and 𝑉 such that

𝐵𝑈 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐵11 𝐵12𝐵

−1
22𝑅𝐵 0 0
𝑅𝐵 0 0

0 0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and 𝑉𝑇𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐶11 𝐶12 𝐶13 𝐶14

0 0 0
0 0

𝑅𝐶

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

where 𝑅𝐵 and 𝑅𝐶 are nonsingular and upper triangular.

17

Proof. Suppose 𝐴 = 𝐼, then

𝐶𝐴−1𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐶11𝐵11 𝐶11𝐵12 + 𝐶12𝐵22 𝐶11𝐵13 + 𝐶12𝐵23 𝐶11𝐵14 + 𝐶12𝐵24

0 0 0
0 0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
is block diagonal by the assumption on the structure of 𝐶𝐴−1𝐵. It follows that 𝐶12 = −𝐶11𝐵12𝐵

−1
22

and that 𝐵1 𝑗 = −𝐶−1
11𝐶12𝐵2 𝑗 = 𝐵12𝐵

−1
22 𝐵2 𝑗 for 𝑗 = 2, 3, and 4. In other words,

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐵11 𝐵12𝐵

−1
22 𝐵22 𝐵12𝐵

−1
22 𝐵23 𝐵12𝐵

−1
22 𝐵24

𝐵22 𝐵23 𝐵24

0 0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence, if ˜︁𝑈 is such that [𝐵22 𝐵23 𝐵24]˜︁𝑈 = [𝑅𝐵 0 0], then 𝑈 =
[︁
𝐼 0
0 ˜︁𝑈]︁

is the desired 𝑈. When 𝐴 ≠ 𝐼,
the product 𝐶𝐴−1 has the same block structure as 𝐶 and the proof is similar. For 𝐶 we can use a
QR decomposition to compute a ˜︁𝑉 such that ˜︁𝑉𝑇 [𝐶24; 𝐶34; 𝐶44] has the form [0; 0; 𝑅𝐶], so that
𝑉 =

[︁
𝐼 0
0 ˜︁𝑉]︁

is the sought after 𝑉. □

The assumption in Proposition 12 that𝑀 =
[︁
𝑀11 𝑀12

0 0
]︁
for some nonsingular𝑀11 is not necessarily

satisfied directly after the preprocessing phase from Section 3. If 𝑀 does have this form, then 𝑀12
converges to zero if the implicit Kogbetliantz iteration converges, so that Proposition 13 applies. We
suspect that a finite number of cycles from Algorithm 1 with Algorithm 2 for the 2 × 2 RSVDs will
bring 𝑀 into with the desired form; however, we could not come up with a proof yet. The reason
for this suspicion is that Algorithm 2 computes rotations that move nonzero entries of 𝑀𝑖 𝑗 to the
upper-left corner if 𝑀𝑖 𝑗 is singular.

In any case, we can ensure that 𝑀 has the desired structure with the transformations that
follow; though, this approach is only of theoretical interest when we want the factors 𝑆 and 𝑇 ,
and requires (at least) two more and unwanted rank decisions in floating-point arithmetic. We
start with compressing 𝐵 by comping 𝑃 (1) and 𝑈 (1) such that 𝐵(2) = 𝑃𝑇𝐵𝑈 =

[︂
𝐵
(2)
11 0
0 0

]︂
, where

𝐵
(2)
11 is nonsingular. Next, we compute 𝑄 (1) such that 𝐴(2) = 𝑃 (1)𝑇𝐴𝑄 (1) is upper triangular, 𝑉 (1)

such that 𝐶 (2) = 𝑉 (1)𝑇𝐶𝑄 (1) is upper triangular, and partition both matrices into blocks with block
sizes matching the blocks of 𝐵(2) . Then, we compress 𝐶 (2)

11 by computing 𝑉 (2)
11 and 𝑄 (2)

11 such that

𝑉
(2)
11

𝑇𝐶
(2)
11 𝑄

(2)
11 =

[︂
𝐶
(3)
11 0
0 0

]︂
. Finally, we compute 𝑃 (2)11 such that 𝑃 (2)11

𝑇𝐴
(2)
11 𝑄

(2)
11 is upper triangular, and

compute 𝑈 (2)
11 such that 𝑃 (2)11

𝑇𝐵
(2)
11 𝑈

(2)
11 is upper triangular. We can now partition the resulting 𝐴(3) ,

𝐵(3) , and 𝐶 (3) as⎡⎢⎢⎢⎢⎢⎣
𝐴
(3)
11 𝐴

(3)
12 𝐴

(3)
13

𝐴
(3)
22 𝐴

(3)
23

𝐴
(3)
33

⎤⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎣
𝐵
(3)
11 𝐵

(3)
12 0
𝐵
(3)
22 0

0

⎤⎥⎥⎥⎥⎥⎦ , and

⎡⎢⎢⎢⎢⎢⎣
𝐶
(3)
11 0 𝐶

(3)
13

0 𝐶
(3)
23

𝐶
(3)
33

⎤⎥⎥⎥⎥⎥⎦ ,
respectively, from which we can see that 𝑀 (3) has the desired structure. If desired, we can even get
the structure from (12) without the Kogbetliantz iteration by computing[︄

𝑉
(3)
22 𝑉

(3)
23

𝑉
(3)
32 𝑉

(3)
33

]︄𝑇 [︄
𝐶
(3)
23

𝐶
(3)
33

]︄
𝑄

(3)
33 =

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0
0 𝐶

(4)
44

⎤⎥⎥⎥⎥⎥⎦ ,
and by computing 𝑃 (3)33 such that 𝑃 (3)33

𝑇𝐴
(3)
33 𝑄

(3)
33 is upper triangular.

18

4.3 The 2-by-2 RSVD in floating point arithmetic. Thus far, we have only considered the 2×2 RSVD
in exact arithmetic. The goal of this section is to show that Algorithm 2 computes a numerically
stable result in floating-point arithmetic under the assumptions of the standard model from, e.g.,
Higham [23, Ch. 2] or the LAPACK Users’ Guide [2, Sec. 4.1.1]. That is, given two floating-point
numbers 𝑎 and 𝑏, and some operation ◦ ∈ {+,−, ·, /}, we assume that fl(𝑎 ◦ 𝑏) = (𝑎 ◦ 𝑏) (1 + 𝜖),
where |𝜖| ≤ 𝝐 and 𝝐 is the unit roundoff (2−53 in case of IEEE 754 double precision arithmetic). We
additionally assume that taking the absolute value of a floating-point number is exact, as well as
multiplying by zero or ±1. We ignore overflow, underflow, and higher-order terms, as usual, unless
stated otherwise. For convenience, different occurrences of 𝜖 and error matrices do not need to have
the same value unless they have subscript indices. Another convention is that overlined quantities
denote the “computed” version of quantities; for example, if 𝑐 = 𝑎 ◦ 𝑏, then 𝑐 = fl(𝑎 ◦ 𝑏).

To prove the main results from this section, we first need the bounds from the following two
lemmas. The first lemma bounds a sum of elements from the product of two particular nonnegative
matrices. The second lemma bounds the norms of the backward perturbations in the computed
product fl(𝐶 adj(𝐴)𝐵), where 𝐴, 𝐵, and 𝐶 are upper-triangular 2 × 2 matrices.

Lemma 14. Given a 2 × 2 upper-triangular matrix 𝑅 and an orthonormal matrix 𝑄, let 𝑍 = |𝑄𝑇 | |𝑅 |;
then 𝑧11 + 𝑧12 ≤

√
3∥𝑅∥. Likewise, if 𝑍 = |𝑅 | |𝑄 |, then 𝑧12 + 𝑧22 ≤

√
3∥𝑅∥.

Proof. For the first result, we have for some 𝛼 and 𝛽 satisfying 𝛼2 + 𝛽2 = 1 that

𝑍 =

[︄
|𝛼| |𝛽 |
|𝛽 | |𝛼|

]︄ [︄
|𝑟11 | |𝑟12 |

|𝑟22 |

]︄
=

[︄
|𝛼| |𝑟11 | |𝛼| |𝑟12 | + |𝛽 | |𝑟12 |
|𝛽 | |𝑟11 | |𝛽 | |𝑟12 | + |𝛼| |𝑟12 |

]︄
.

It follows that

𝑧11 + 𝑧12 = |𝛼| (|𝑟11 | + |𝑟12 |) + 𝛽 |𝑟12 |
≤ |𝛼|∥𝑅∥∞ + |𝛽 |∥𝑅∥2 ≤ (|𝛼|

√
2 +

√
1 − 𝛼2)∥𝑅∥2 ≤

√
3∥𝑅∥2,

where we used the fact that the bound reaches its maximum for 𝛼 = ±
√︁

2/3. The proof of the
second result is similar. □

Lemma 15. Suppose 𝑀 = fl(𝐶 adj(𝐴)𝐵) is computed as

𝑀 =

[︄
fl(fl(𝑐11𝑎22)𝑏11) 𝑚12

fl(𝑐22 fl(𝑎11𝑏22))

]︄
,

where 𝑚12 = fl(fl(fl(fl(𝑐11𝑎22)𝑏12) + fl(𝑐12 fl(𝑎11𝑏22))) − fl(fl(𝑐11𝑎12)𝑏22)). Then there exist small
relative perturbations 𝛿𝐴0, 𝛿𝐵0, and 𝛿𝐶0 of 𝐴, 𝐵, and 𝐶, respectively, such that

(13) 𝑀 = (𝐶 + 𝛿𝐶0) adj(𝐴 + 𝛿𝐴0) (𝐵 + 𝛿𝐵0).

Specifically, 𝛿𝐴0, 𝛿𝐵0, and 𝛿𝐶0 satisfy ∥𝛿𝐴0∥ ≤ 3.5𝝐∥𝐴∥, ∥𝛿𝐵0∥ ≤ 3𝝐∥𝐵∥, and ∥𝛿𝐶0∥ ≤ 3𝝐∥𝐶∥.

Proof. Ignoring second order terms, we have that

𝑀 =

[︄
(𝑐11𝑎22)𝑏11(1 + 𝜖1 + 𝜖2) 𝑚12

𝑐22(𝑎11𝑏22) (1 + 𝜖4 + 𝜖5)

]︄
,

where

𝑚12 = (𝑐11𝑎22)𝑏12(1 + 𝜖1 + 𝜖3 + 𝜖9 + 𝜖10)
+ 𝑐12(𝑎11𝑏22) (1 + 𝜖5 + 𝜖6 + 𝜖9 + 𝜖10) − 𝑐11𝑎12𝑏22(1 + 𝜖7 + 𝜖8 + 𝜖10),

19

and |𝜖𝑖 | ≤ 𝝐 for 𝑖 = 1, . . . , 10. We can get the same 𝑀 in exact arithmetic with the following relative
perturbations:

𝛿𝑎11/𝑎11 = 𝜖5, 𝛿𝑎12/𝑎12 = (𝜖7 + 𝜖8 + 𝜖10), 𝛿𝑎22/𝑎22 = 𝜖1,

𝛿𝑏11/𝑏11 = 𝜖2, 𝛿𝑏12/𝑏12 = (𝜖3 + 𝜖9 + 𝜖10), 𝛿𝑏22/𝑏22 = 0,
𝛿𝑐11/𝑐11 = 0, 𝛿𝑐12/𝑐12 = (𝜖6 + 𝜖9 + 𝜖10), 𝛿𝑐22/𝑐22 = 𝜖4,

and 𝛿𝑎21 = 𝛿𝑏21 = 𝛿𝑐21 = 0, proving (13). Using the equivalence of norms and the definition of the
Frobenius norm, we get the bound:

∥𝛿𝐴∥2 ≤ ∥𝛿𝐴∥𝐹 ≤ 𝝐
√

11 max{|𝑎11 |, |𝑎12 |, |𝑎22 |} ≤ 𝝐
√

11∥𝐴∥2 < 3.5𝝐∥𝐴∥2.

The perturbations 𝛿𝐵 and 𝛿𝐶 are of rank one and satisfy

∥𝛿𝐵∥ ≤ 3𝝐(𝑏2
11 + 𝑏2

12)1/2 ≤ 3𝝐∥𝐵∥2 and ∥𝛿𝐶∥ ≤ 3𝝐(𝑐2
12 + 𝑐2

22)1/2 ≤ 3𝝐∥𝐶∥2,

which concludes the proof. □

Remark 16. We can compute the product fl(𝐶 adj(𝐴)𝐵) and the perturbations 𝛿𝐴, 𝛿𝐵, and 𝛿𝐶 in
different ways. Furthermore, the bounds in the above lemma are not the tightest possible. Instead,
the above perturbations and their bounds are such that we can invoke the lemma for the transposed
and permuted triplet (Π𝑟𝐴

𝑇Π𝑐,Π𝑟𝐶
𝑇Π𝑐,Π𝑟𝐵

𝑇Π𝑐) from the end of Section 3, rather than for the
original triplet (𝐴, 𝐵, 𝐶), without getting qualitative differences in the perturbations of 𝐴, 𝐵, and 𝐶.

We are now ready for the main result of this section: the numerical stability of Algorithm 2 in
floating-point arithmetic.

Theorem 17. Suppose that 𝐴′, 𝐵′, 𝐶 ′, 𝐻, 𝐾, 𝑃, 𝑄, 𝑈, and 𝑉 are computed by Algorithm 2 in floating-
point arithmetic, with 𝑀 computed as in Lemma 15. Furthermore, define 𝐻 ′ and 𝐾 ′ as fl(𝑄𝑇

𝐻) and
fl(𝐾𝑃), respectively, with their (1, 2) elements zeroed. Then the following assertions are true.

1. The matrices 𝐴′, 𝐵′, and 𝐶 ′ are lower triangular.

2. The product 𝑉𝑇𝑀𝑈 is within 132𝝐∥𝑀∥ of being diagonal.

3. The rows of 𝐶 ′ and adj(𝐻 ′) are within 86𝝐∥𝐶∥ and 93.5𝝐∥𝐴∥∥𝐵∥, respectively, of being parallel.
Likewise, the columns of adj(𝐾 ′) and 𝐵′ are within 93.5𝝐∥𝐴∥∥𝐶∥ and 86𝝐∥𝐵∥, respectively, of
being parallel.

4. The matrices 𝐵′, 𝐶 ′, 𝐻 ′, and 𝐾 ′ are computed stably in the following sense. There exist 𝛿𝐵, 𝛿𝐶, 𝛿𝐻,
and 𝛿𝐾, and orthonormal matrices P , Q, 𝑈, and 𝑉, such that 𝑈𝑇𝑀𝑉 is an exact (unnormalized)
SVD of 𝑀, and

𝐵
′
= P𝑇 (𝐵 + 𝛿𝐵)𝑈, 𝐻

′
= Q𝑇 (adj(𝐴)𝐵 + 𝛿𝐻)𝑈,

𝐶
′
= 𝑉𝑇 (𝐶 + 𝛿𝐶)Q, 𝐾

′
= 𝑉𝑇 (𝐶 adj(𝐴) + 𝛿𝐾)P ,

where ∥𝛿𝐵∥ ≤ 493𝝐∥𝐵∥, ∥𝛿𝐶∥ ≤ 493𝝐∥𝐶∥, ∥𝛿𝐻∥ ≤ 486𝝐∥𝐶∥∥𝐴∥, and ∥𝛿𝐾∥ ≤ 486𝝐∥𝐴∥∥𝐵∥.

Proof. The proofs of first three assertions of the theorem follow the proof of Bai and Demmel for
the QSVD [4, Thm. 3.1], mutatis mutandis. The proof of the fourth assertion deviates in the choice
of the 𝜂s defined below, which is a difference that will be useful for later propositions and bounds.
Due to this similarity, we also use the following facts from Bai and Demmel’s proof.

20

Fact 1 The computed 𝑈 and 𝑉 from xLASV2 satisfy 𝑈 = 𝑈 + 𝛿𝑈, 𝑉 = 𝑉 + 𝛿𝑉, where 𝑉𝑇𝑀𝑈
is an exact (unnormalized) SVD of 𝑀, and 𝛿𝑈 and 𝛿𝑉 are small componentwise relative
perturbations of 𝑈 and 𝑉, respectively, bounded by 46.5𝝐 in each component. This also implies
∥𝛿𝑈∥ ≤

√
2 · 46.5𝝐 < 66𝝐 and ∥𝛿𝑉 ∥ < 66𝝐.

Fact 2 Using simple geometry, one can show that changing 𝑓 to 𝑓 + 𝛿 𝑓 and 𝑔 to 𝑔 + 𝛿𝑔 changes
𝑐 = 𝑓/

√︁
𝑓 2 + 𝑔2 and 𝑠 = 𝑔/

√︁
𝑓 2 + 𝑔2 to 𝑐 + 𝛿𝑐 and 𝑠 + 𝛿𝑠, respectively, where

√
𝛿𝑐2 + 𝛿𝑠2 ≤

2((𝛿 𝑓 2 + 𝛿𝑔2)/(𝑓 2 + 𝑔2))1/2.

Fact 3 Subroutine xLARTG computes 𝑐 = 𝑓/
√︁
𝑓 2 + 𝑔2 and 𝑠 = 𝑔/

√︁
𝑓 2 + 𝑔2 with relative errors

bounded by 6𝝐. This means that the 2 × 2 matrix rot(𝑐, 𝑠) has an error bounded in norm by√
2 · 6𝝐 < 9𝝐.

Fact 4 If 𝑋 and 𝑌 are 2 × 2 matrices, then ∥ fl(𝑋𝑌) − 𝑋𝑌 ∥ ≤ 4𝝐∥𝑋 ∥∥𝑌 ∥.

To prove the assertions of the theorem, first suppose that 𝑐11 = 0 and 𝑏22 = 0. Then the first
assertion holds by construction, and the second assertion follows from the nonzero structure of
the matrices. The third and fourth assertions hold since 𝑃 = 𝑄 = 𝐽 are exact, and 𝑈 and 𝑉 are
computed from 𝐵 and 𝐶 with high relative accuracy by Fact 3. Now assume for the rest of the proof
that 𝑐11 ≠ 0 or 𝑏22 ≠ 0.

The lower-triangularity of 𝐴
′
, 𝐵

′
, and 𝐶

′
hold by construction. The near diagonality of 𝑉

𝑇
𝑀𝑈

holds by the high accuracy of 𝑈 and 𝑉. Specifically, it follows from Fact 1 that

𝑉
𝑇
𝑀𝑈 = (𝑉 + 𝛿𝑉)𝑇𝑀 (𝑈 + 𝛿𝑈) ≈ 𝑉𝑇𝑀𝑈 + 𝛿𝑉𝑇𝑀𝑈 + 𝑉𝑇𝑀𝛿𝑈,

where 𝑉𝑇𝑀𝑈 is an exact unnormalized SVD of 𝑀, and

∥𝛿𝑉𝑇𝑀𝑈∥ + ∥𝑉𝑇𝑀𝛿𝑈∥ ≤ (66 + 66)𝝐∥𝑀∥ = 132𝝐∥𝑀∥.

We prove the third assertion only for 𝐶
′
and adj(𝐻 ′), as the and the proof for adj(𝐾 ′) and 𝐵′ is

similar. We also only have to consider the bottom rows, since the explicitly zeroed (1, 2) entries
make the top rows parallel by construction. Now, the bottom rows of 𝐶

′
and adj(𝐻 ′) are identical to

the bottom rows of fl(𝐺𝑄) and adj(fl(𝑄𝑇
𝐻)), respectively, and the bottom rows of 𝑉𝑇 (𝐶 + 𝛿𝐶0)Q

and adj(𝑈𝑇 (𝐵 + 𝛿𝐵0) adj(𝐴 + 𝛿𝐴0)Q) are parallel by construction for any orthonormal matrix Q.
Hence, it suffices to bound the distance between the former two pairs of matrices for a suitable
choice of Q, which we can do as follows. From Lemma 15 and Fact 4 it follows that for some error
term 𝐹1 with ∥𝐹1∥ ≤ 4𝝐∥𝐶∥, we have that

𝐺 = fl(𝑉𝑇𝐶) = 𝑉𝑇𝐶 + 𝐹1 = 𝑉𝑇 (𝐶 + 𝛿𝐶0) − 𝑉𝑇𝛿𝐶0 + 𝛿𝑉𝑇𝐶 + 𝐹1⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝐹2

;

thus, the error in 𝐺 is bounded by

∥𝐹2∥ ≤ ∥𝑉𝑇𝛿𝐶0∥ + ∥𝛿𝑉𝑇𝐶∥ + ∥𝐹1∥ ≤ (3 + 66 + 4)𝝐∥𝐶∥ = 73𝝐∥𝐶∥.

Using Fact 3, we see that for any 𝑄 = Q + 𝛿Q computed with xLARTG, we have that

fl(𝐺𝑄) = 𝐺𝑄 + 𝐹2 = (𝑉𝑇 (𝐶 + 𝛿𝐶0) + 𝐹2) (Q + 𝛿Q) + 𝐹3

= 𝑉𝑇 (𝐶 + 𝛿𝐶0)Q + 𝐹2Q + 𝑉𝑇𝐶𝛿Q + 𝐹3⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝐹4

,

with the error term bounded by

∥𝐹4∥ ≤ ∥𝐹2Q∥ + ∥𝑉𝑇𝐶𝛿Q∥ + ∥𝐹3∥ ≤ (73 + 9 + 4)𝝐∥𝐶∥ = 86𝝐∥𝐶∥.

21

For some 𝐹5 with ∥𝐹5∥ ≤ 2 · 4𝝐∥𝐴∥∥𝐵∥, we have that

𝐻 = adj(𝐴)𝐵𝑈 + 𝐹5

= adj(𝐴 + 𝛿𝐴0 − 𝛿𝐴0) (𝐵 + 𝛿𝐵0 − 𝛿𝐵0)𝑈 + adj(𝐴)𝐵𝛿𝑈 + 𝐹5

= adj(𝐴 + 𝛿𝐴0) (𝐵 + 𝛿𝐵0)𝑈 − adj(𝛿𝐴0)𝐵𝑈 − adj(𝐴)𝛿𝐵0𝑈 + adj(𝐴)𝐵𝛿𝑈 + 𝐹5⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞
𝐹6

,

so that the error in 𝐻 is bounded by

∥𝐹6∥ ≤ ∥ adj(𝛿𝐴0)𝐵𝑈∥ + ∥ adj(𝐴)𝛿𝐵0𝑈∥ + ∥ adj(𝐴)𝐵𝛿𝑈∥ + ∥𝐹5∥
≤ (3.5 + 3 + 66 + 2 · 4)𝝐∥𝐴∥∥𝐵∥ = 80.5𝝐∥𝐴∥∥𝐵∥.

Hence, for some 𝐹6 and 𝐹7 with ∥𝐹6∥ ≤ 80.5𝝐∥𝐴∥∥𝐵∥ and ∥𝐹7∥ ≤ 4𝝐∥𝐴∥∥𝐵∥, and any rotation
𝑄 = Q + 𝛿Q computed with xLARTG, we have that

(14)

fl(𝑄𝑇
𝐻) = 𝑄

𝑇
𝐻 + 𝐹7

= (Q + 𝛿Q)𝑇 (adj(𝐴 + 𝛿𝐴0) (𝐵 + 𝛿𝐵0)𝑉 + 𝐹6) + 𝐹7

= Q𝑇 adj(𝐴 + 𝛿𝐴0) (𝐵 + 𝛿𝐵0)𝑉 +Q𝑇𝐹6 + 𝛿Q𝑇 adj(𝐴)𝐵𝑉 + 𝐹7⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝐹8

,

so that the error term is bounded by (80.5 + 9 + 4)𝝐∥𝐴∥∥𝐵∥ = 93.5𝝐∥𝐴∥∥𝐵∥.
For the fourth and final assertion, we only prove the bounds for ∥𝛿𝐶∥ and ∥𝛿𝐻∥, because

bounding ∥𝛿𝐵∥ and ∥𝛿𝐾∥ is similar. The main challenge now is to quantify the effect of zeroing the
(1, 2) entries at the end of the algorithm. Suppose first that |ℎ12 | + |ℎ22 | = 0, then the algorithm
computes 𝑄 from 𝐺, and 𝑄 zeros the (1, 2) entry of 𝐺 with high relative accuracy as a result of
Fact 3. Furthermore, in this case it holds for any 𝑄 that fl(𝑄𝑇

𝐻)12 = 0. Otherwise, if |ℎ12 | + |ℎ22 | ≠ 0
but |𝑔11 | + |𝑔12 | = 0, then the algorithm computes 𝑄 to accurately zero out the (1, 2) entry of 𝐻,
and fl(𝐺𝑄)12 = 0. Now we may assume that |ℎ12 | + |ℎ22 | ≠ 0 and |𝑔11 | + |𝑔12 | ≠ 0 for the rest of
the proof, and that 𝜂𝑔 ≤ 𝜂ℎ so that the algorithm computes 𝑄 from 𝐺. The proof is similar when
𝜂𝑔 > 𝜂ℎ and the algorithm computes 𝑄 from 𝐻, but leads to different bounds that we summarize at
the end of the proof.

It follows from Fact 3 that the algorithm computes 𝑄 in such a way that the (1, 2) entry of 𝐺
is zeroed with high relative precision. Bounding the effect of zeroing the (1, 2) entry of fl(𝑄𝑇

𝐻)
to get 𝐻

′
is more involved. Let 𝑄 = 𝑄 + 𝛿𝑄, where 𝑄 denotes the exact rotation obtained from

𝑉𝑇 (𝐶 + 𝛿𝐶0) in exact arithmetic (which can be bigger than just the error from xLARTG due to the
errors in 𝑉); then

|fl(𝑄𝑇
𝐻)12 | = |ℎ12(1 + 2𝜖) (𝑞11 + 𝛿𝑞11) + ℎ22(1 + 2𝜖) (𝑞21 + 𝛿𝑞21) |

= | (ℎ12 + 82.5𝜖∥𝐴∥∥𝐵∥)𝑞11 + (1 + 2𝜖)ℎ12𝛿𝑞11

+ (ℎ22 + 82.5𝜖∥𝐴∥∥𝐵∥)𝑞21 + (1 + 2𝜖)ℎ22𝛿𝑞21 |
≤ (1 + 2𝝐) (|ℎ12 | |𝛿𝑞11 | + |ℎ22 | |𝛿𝑞21 |) +

√
2 · 82.5𝝐∥𝐴∥∥𝐵∥.

Before proceeding, recall that ˆ︁𝐺 = fl(|𝑉 |𝑇 |𝐶 |) and ˆ︁𝐻 = fl(| adj(𝐴) | fl(|𝐵| |𝑈 |)), so that

𝝐𝜂𝑔 = 𝝐(ˆ︁𝑔11 +ˆ︁𝑔12)/(|𝑔11 | + |𝑔12 |) and 𝝐𝜂ℎ = 𝝐(ˆ︁ℎ12 +ˆ︁ℎ22)/(|ℎ12 | + |ℎ22 |).

Furthermore, it can be verified that the entries of 𝐺 may have a perturbation of up to 51.5𝝐ˆ︁𝑔𝑖 𝑗, where
46.5𝝐 comes from the perturbations in 𝛿𝑈, and 2𝝐 from the roundoff errors in the matrix-matrix
multiplication, and 3𝝐 from 𝛿𝐶0. Hence, using

(51.5𝝐ˆ︁𝑔11)2 + (51.5𝝐ˆ︁𝑔12)2 ≤ (51.5𝝐)2(|ˆ︁𝑔11 | + |ˆ︁𝑔12 |)2 = (51.5𝝐𝜂𝑔)2(|𝑔11 | + |𝑔12 |)2

22

and Facts 2 and 3, we can bound (|𝛿𝑞11 |2 + |𝛿𝑞21 |2)1/2 by

9𝝐 + 2 · 51.5𝝐𝜂𝑔
|𝑔11 | + |𝑔12 |√︂
𝑔2

11 + 𝑔2
12

≤ 9𝝐 + 2
√

2 · 51.5𝝐𝜂𝑔 ≤ 155𝝐max{1, 𝜂𝑔}.

If 𝜂𝑔 ≤ 1, then |fl(𝑄𝑇
𝐻)12 | ≤

√
2(155 + 82.5)𝝐∥𝐴∥∥𝐵∥ ≤ 336𝝐∥𝐴∥∥𝐵∥; otherwise, we can use

Lemma 14 to show that

(|ℎ11 | + |ℎ12 |)𝝐 = (ˆ︁ℎ12 +ˆ︁ℎ22)𝝐𝜂−1
ℎ ≤

√
3∥𝐴∥∥𝐵∥𝝐𝜂−1

ℎ ,

which in turn implies the bound

| fl((𝑄𝑇
𝐻)12) | ≤ (1 + 2𝝐) (|ℎ11 | + |ℎ12 |)155𝝐𝜂𝑔 + 117𝝐∥𝐴∥∥𝐵∥

≤ (
√

3 · 155
𝜂𝑔

𝜂ℎ
+ 117)𝝐∥𝐴∥∥𝐵∥.

Since 𝜂𝑔 ≤ 𝜂ℎ by assumption, it follows that |fl(𝑄𝑇
𝐻)12 | ≤ 386𝝐∥𝐴∥∥𝐵∥. By writing the error term

in (14) as 𝐹8 and the explicit zeroing of the (1, 2) entry as 𝐹9 = −fl(𝑄𝑇
𝐻)12𝒆1𝒆𝑇2 , everything can be

put together to yield

𝐻
′
= Q𝑇 adj(𝐴 + 𝛿𝐴0) (𝐵 + 𝛿𝐵0)𝑈 + 𝐹8 + 𝐹9

= Q𝑇 (adj(𝐴)𝐵 + adj(𝛿𝐴0)𝐵 + adj(𝐴)𝛿𝐵0 + 𝑄𝐹8𝑈
𝑇 + 𝑄𝐹9𝑈

𝑇)𝑈
= Q𝑇 (adj(𝐴)𝐵 + 𝛿𝐻)𝑈,

where ∥𝛿𝐻∥ ≤ (3.5 + 3 + 93.5 + 386)𝝐∥𝐴∥∥𝐵∥ = 486𝝐∥𝐴∥∥𝐵∥.
The proof is similar when 𝜂𝑔 > 𝜂ℎ and 𝑄 is computed from 𝐻, except for the following differences.

We get
√

2 · (73 + 2) ≤ 107 instead of
√

2 · (80.5 + 2) ≤ 117, elements in 𝐻 may be perturbed
by up to (46.5 + 3.5 + 3 + 2 · 2)𝝐ˆ︁ℎ𝑖 𝑗 = 57𝝐ˆ︁ℎ𝑖 𝑗, the quantity (|𝛿𝑞11 |2 + |𝛿𝑞21 |2)1/2 is bounded
by 9𝝐 + 2

√
2 · 57𝝐𝜂ℎ ≤ 171𝝐max{1, 𝜂ℎ}, the perturbation 𝛿𝐴0 is not part of 𝛿𝐶, and 93.5𝝐

should be replaced by ∥𝐹4∥ ≤ 86𝝐 in the final bound. Hence, the factor in the resulting bound is
(3 + 86 + 107 +

√
3 · 171)𝝐 ≤ 493𝝐. □

Although the theorem above shows that Algorithm 2 has favorable numerical properties, it lacks
a bound on the backward error of 𝐴

′
. Moreover, we have to content ourselves with 𝐻

′
and 𝐾

′
instead

of adj(𝐴′)𝐵′ and 𝐶 ′
adj(𝐴′). However, the proof shows that we can bound the errors in 𝑃 and 𝑄 in

terms of the 𝜂s, which in turn allows us to express the error in 𝐴
′
in terms of the 𝜂s. We can then

try to ensure that the 𝜂s remain small, so that the error in 𝐴
′
is small. These things are the focus of

the next section.

5 The backward error of the computed A′. Although the numerical results in Section 9 suggest
that the relative magnitude of fl(𝑃𝑇𝐴𝑄)12 is always small in practice, it is unclear if we can prove
that ∥𝛿𝐴∥ is O(𝝐∥𝐴∥) in the worst case. An alternative is to bound the backward error of 𝐴

′
in

terms of the 𝜂s, and then to analyze the behavior of the 𝜂s. We can simplify this analysis with the
following two definitions.

Definition 18. Define 𝜂𝑔 from Algorithm 2 as

𝜂𝑔 =

{︄
(ˆ︁𝑔11 +ˆ︁𝑔12)/(|𝑔11 | + |𝑔12 |) if |𝑔11 | + |𝑔12 | ≠ 0
∞ if |𝑔11 | + |𝑔12 | = 0,

and define the remaining 𝜂s and 𝜂s analogously.

23

Definition 19. Define 𝜂max as 𝜂max = max{1,min{𝜂𝑔, 𝜂ℎ},min{𝜂𝑘, 𝜂𝑙}} and define 𝜂max analo-
gously.

We will later see that 𝜂max, 𝜂max < ∞, which is important for two reasons. First, it allows us to
simplify the conditions in Algorithm 2 that determine whether to compute 𝑄 and 𝑃 from 𝐺 or 𝐻
and 𝐿 or 𝐾, respectively, by dropping the zero checks and keeping just 𝜂𝑔 ≤ 𝜂ℎ and 𝜂𝑙 ≤ 𝜂𝑘. Second,
we can now bound the backward error of 𝐴

′
in terms of 𝜂max instead of having to consider separate

cases with separate 𝜂s.

Theorem 20. Suppose 𝑃 is obtained in a similar way as 𝑄, and 171𝝐𝜂max ≪ 1; then there exists 𝛿𝐴,
P , and Q such that 𝐴′ = P (𝐴 + 𝛿𝐴)Q and ∥𝛿𝐴∥ ≤ (44.5 + 342𝜂max)𝝐∥𝐴∥.

Proof. Since 𝑃 is computed in a similar way as 𝑄, it follows from the proof of Theorem 17 that
𝑃 can be decomposed as both 𝑃 = P + 𝛿P and 𝑃 = 𝑃 + 𝛿𝑃. Here, P and 𝑃 are both exactly
orthonormal matrices, and ∥𝛿P ∥ ≤ 9𝝐 is the error incurred by computing any 𝑃 with xLARTG in
floating-point arithmetic, and ∥𝛿𝑃∥ ≤ 171𝝐𝜂max is the error incurred by computing the rotation
from an approximation of 𝑉𝑇 (𝐶+𝐶0) adj(𝐴+ 𝐴0) or (𝐵+ 𝐵0)𝑈 in floating-point arithmetic. It follows
that for some 𝐹1 with ∥𝐹1∥ ≤ 2 · 4𝝐,

fl(𝑃𝑇𝐴𝑄) = (P + 𝛿P)𝑇𝐴(Q + 𝛿Q) + 𝐹1

= P𝑇 (𝐴 + 𝛿𝐴0)Q − P𝑇𝛿𝐴0Q + 𝛿P𝑇𝐴Q + P𝑇𝐴𝛿Q + 𝛿P𝑇𝐴𝛿Q + 𝐹1⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
𝐹2

,

where the error is bounded by

∥𝐹2∥ ≤ ∥P𝑇𝛿𝐴0Q∥ + ∥𝛿P𝑇𝐴Q∥ + ∥P𝑇𝐴𝛿Q∥ + ∥𝐹∥ ≤ (3.5 + 9 + 9 + 2 · 4)𝝐∥𝐴∥ = 29.5𝝐∥𝐴∥.

Furthermore, for some 𝑓3 with

| 𝑓3 | ≤ 8𝝐∥𝒆𝑇1 (𝑃 + 𝛿𝑃)∥∥𝐴∥∥(𝑄 + 𝛿𝑄)𝒆2∥ ≤ 8𝝐(1 + 171𝝐𝜂max)2∥𝐴∥ ≈ 8𝝐∥𝐴∥

we have that

| fl(𝑃𝑇𝐴𝑄)12 | ≤ |(𝑃 + 𝛿𝑃)𝑇 𝐴(𝑄 + 𝛿𝑄) |12 + | 𝑓3 |
= |𝑃𝑇 (𝐴 + 𝛿𝐴0)𝑄 − 𝑃𝑇𝛿𝐴0𝑄 + 𝛿𝑃𝑇𝐴𝑄 + 𝑃𝑇𝐴𝛿𝑄 + 𝛿𝑃𝑇𝐴𝛿𝑄 |12 + | 𝑓3 |
≤ |𝑃𝑇𝛿𝐴0𝑄 |12 + |𝛿𝑃𝑇𝐴𝑄 |12 + |𝑃𝑇𝐴𝛿𝑄 |12 + |𝛿𝑃𝑇𝐴𝛿𝑄 |12 + | 𝑓3 |
≤ (3.5𝝐 + 2 · 171𝝐𝜂max + 8𝝐)∥𝐴∥.

Here, we used that 𝑃𝑇 (𝐴 + 𝛿𝐴0)𝑄 = 0, and that the assumption 171𝝐𝜂max ≪ 1 makes 𝝐2𝜂max and
(𝝐𝜂max)2 higher-order terms. Now the explicit zeroing of the (1, 2) entry of 𝐴′ is the same as adding
the error term 𝐹4 = − fl(𝑃𝑇𝐴𝑄)12𝒆1𝒆𝑇2 , so that

𝐴′ = P𝑇 (𝐴 + 𝛿𝐴0)Q + 𝐹2 + 𝐹4 = P𝑇 (𝐴 + 𝛿𝐴0 + P (𝐹2 + 𝐹4)Q𝑇)Q = P𝑇 (𝐴 + 𝛿𝐴)Q.

Thus, by combining the relevant error terms and their bounds, we get

∥𝛿𝐴∥ ≤ (3.5 + 29.5 + 11.5 + 342𝜂max)𝝐∥𝐴∥ = (44.5 + 342𝜂max)𝝐∥𝐴∥,

which is the desired result. □

In essence, if 𝜂max is sufficiently small, then the errors 𝛿𝑃 and 𝛿𝑄 stay small, and Algorithm 2
computes 𝐴

′
stably. Hence, the goal is now to bound 𝜂max. We start by showing that 𝜂max is always

finite, but before we can start with the proof, we need the following properties of Algorithm 2 and
the routine xLASV2.

24

Lemma 21. Consider Algorithm 2 and assume the following: 𝑐11 ≠ 0 or 𝑏22 ≠ 0, the SVD of 𝑀
is computed with xLASV2 as given in Bai and Demmel [4, App.], and the columns of 𝑈 and 𝑉 are
postmultiplied by 𝐽 if the relevant conditions in the algorithm are met. Then 𝑈 = 𝑉 = 𝐼 if 𝑀 = 0,
|𝑈 | = |𝐽 | and |𝑉 | = 𝐼 if 𝑚11 = 𝑚22 = 0 and 𝑚12 ≠ 0, |𝑉 | ≈ 𝐼 if 𝑏22 = 0, and |𝑈 | ≈ |𝐽 | if 𝑐11 = 0 but
𝐶 ≠ 0, where the zeros are exact even for the latter 𝑈 and 𝑉.

Proof. The desired results follow from the implementation and high relative accuracy of xLASV2,
combined with the postmultiplication of 𝑈 and 𝑉 by 𝐽 when the conditions on Line 9 of Algorithm 2
are met. □

The preceding lemma implies that the 𝑈 and 𝑉 computed with Algorithm 2 in floating-point
arithmetic correspond to the exact 𝑈 and 𝑉 from Lemma 11 with high relative accuracy, at least for
those cases of Lemma 11 that correspond to the assumption of the lemma above. With this result,
we can now prove the following proposition and corollary, which show that 𝜂max is finite.

Proposition 22. If 𝑐11 ≠ 0 or 𝑏22 ≠ 0, then |𝑔11 | + |𝑔12 | = 0 and |ℎ12 | + |ℎ22 | = 0 cannot hold
simultaneously. Likewise and under the same assumptions, neither |𝑘11 | + |𝑘12 | = 0 and |𝑙12 | + |𝑙22 | = 0,
nor |𝑔11 | + |𝑔12 | = 0 and |𝑙12 | + |𝑙22 | = 0 can hold simultaneously.

Proof. If 𝑏22 = 0, then by Lemma 21 |𝑉 | ≈ 𝐼, so that 𝑔11 = 𝑣11𝑐11(1 + 𝜖) ≠ 0. Conversely, if 𝐶 = 0,
then 𝑈 = 𝐼 and ℎ22 = 𝑎11𝑏22(1 + 𝜖) ≠ 0. If 𝑐11 = 0 but 𝐶 ≠ 0, then

𝑀 =

[︄
0 𝑐12(𝑎11𝑏22) (1 + 𝜖1) (1 + 𝜖2)
0 𝑐22(𝑎11𝑏22) (1 + 𝜖1) (1 + 𝜖3)

]︄
for some |𝜖1 |, |𝜖2 |, |𝜖3 | ≤ 𝝐. Using the entries of 𝑀 and Facts 1 and 2 from the proof of Theorem 17,
we see that |𝑔12 | equals

|𝑣11𝑐12(1 + 48.5𝜖) + 𝑣21𝑐22(1 + 48.5𝜖) | =
|︁|︁|︁|︁|︁ 𝑐2

12(1 + 50.5𝜖)
(𝑐2

12 + 𝑐2
22)−1/2

+
𝑐2
22(1 + 50.5𝜖)
(𝑐2

12 + 𝑐2
22)−1/2

|︁|︁|︁|︁|︁ ,
which is within 50.5∥𝐶∥𝝐 of ∥𝐶∥. Hence, we conclude that |𝑔12 | is nonzero.

If both 𝑐11 ≠ 0 and 𝑏22 ≠ 0 but |𝑔11 | + |𝑔12 | = 0 and |ℎ12 | + |ℎ22 | = 0, then

0 = |𝑣11𝑐11(1 + 47.5𝜖) | + |𝑣11𝑐12(1 + 48.5𝜖) + 𝑣21𝑐22(1 + 48.5𝜖) |,
0 = |𝑢22𝑏22𝑎11(1 + 48.5𝜖) |

+ |𝑢22(𝑎22𝑏12(1 + 50.5𝜖) − 𝑎12𝑏22(1 + 50.5𝜖)) + 𝑢12𝑎22𝑏11(1 + 50.5𝜖) |.

The former implies that 𝑣11 = 0 and thus also that 𝑐22 = 0, and the latter implies that 𝑢22 = 0 and
thus also that 𝑏11 = 0. Yet, by Lemma 21 we cannot simultaneously have |𝑈 | = |𝐽 | and |𝑉 | = |𝐽 |
when 𝑐22 = 𝑏11 = 0 so that we have a contradiction.

The proof for the second claim in the proposition is similar, and the third claim holds because
|𝑘11 | + |𝑘12 | = 0 if |𝑔11 | + |𝑔12 | = 0 and |ℎ12 | + |ℎ22 | = 0 if |𝑙12 | + |𝑙22 | = 0. □

Corollary 23. Since neither 𝜂𝑔 and 𝜂ℎ, nor 𝜂𝑘 and 𝜂𝑙 are infinite simultaneously, 𝜂max is finite.

In exact arithmetic, we can prove an even stronger result, namely that 𝜂𝑔 = ∞ and 𝜂𝑙 = ∞ if and
only if 𝑐11 = 0 and 𝑏22 = 0, respectively. This is not the case in floating-point arithmetic, and the
𝜂s may be finite or infinite in unexpected situations. For example, if 𝐵 =

[︁
𝑏11 𝑏12
0 0

]︁
, then the exact

𝑈 should be such that 𝐿 = 𝐵𝑈 =
[︁
𝑙11 0
0 0

]︁
so that 𝜂𝑙 = ∞; but the computed 𝑈 is typically such that

𝐿 = fl(𝐵𝑈) =
[︂
𝑙11 O (𝜖∥𝐵 ∥)
0 0

]︂
so that 𝜂𝑙 < ∞. This can be a problem when, for example, 𝐶 =

[︁
1 1
0 0

]︁
and adj(𝐴) =

[︁
𝜇 1−𝜇
0 −1

]︁
for some 0 < 𝜇 ≪ 1, so that |𝑉 | ≈ 𝐼 and 𝜂𝑘 ≈ (1 + |1 − 𝜇 |)/|2𝜇 |. Hence, if

25

𝜇 → 0 and we do not explicitly set 𝑙12 to zero, then 𝜂𝑘 can become larger than 𝜂𝑙 and Algorithm 2
will compute 𝑃 from 𝐵𝑈 rather than from 𝑉𝑇𝐶 adj(𝐴). The results from Theorem 17 still hold if
this happens, but 𝜂max will be large and we can no longer expect |fl(𝑃𝑇𝐴𝑄)12 | to be small. In this
example, the condition number of 𝐴 is of order O(𝜇−1) too, and we will later see that 𝜅(𝐴) plays
an important role in bounding 𝜂max.

The next proposition implies that 𝜂𝑔 < ∞ if 𝜂𝑔 < ∞ and that 𝜂𝑙 < ∞ if 𝜂𝑙 < ∞, which means
that the discrepancy between the 𝜂s and the 𝜂s for ∞ exists only in one direction. Furthermore, the
proposition makes it easier to compute the bounds that we want, because we have formulae for the
exact 𝜂s while the computed 𝜂s are perturbed by unknown roundoff errors.

Proposition 24. Suppose 𝜂𝑔, 𝜂𝑔 < ∞ and 𝜂ℎ, 𝜂ℎ < ∞ are small enough; then we have the first-order
approximations

(15) 𝜂𝑔 = 𝜂𝑔
1 + 50.5𝜖1

1 + 49.5𝜖2𝜂𝑔
and 𝜂ℎ = 𝜂ℎ

1 + 52.5𝜖3

1 + 51.5𝜖4𝜂ℎ
,

respectively, where |𝜖𝑖 | ≤ 𝝐 for 𝑖 = 1, . . .4. A similar statement holds for 𝜂𝑘, 𝜂𝑘 and 𝜂𝑙, 𝜂𝑙.

Proof. Since 𝑣11 = 𝑣11(1 + 46.5𝜖) and 𝑣21 = 𝑣21(1 + 46.5𝜖), it follows that

fl(ˆ︁𝑔11 +ˆ︁𝑔12) = (| fl(𝑣11𝑐11) | + fl(| fl(𝑣11𝑐12) | + | fl(𝑣21𝑐22) |)) (1 + 𝜖)
= |𝑣11𝑐11 | (1 + 48.5𝜖) + |𝑣11𝑐12 | (1 + 49.5𝜖) + |𝑣21𝑐22 | (1 + 49.5𝜖)
= (ˆ︁𝑔11 +ˆ︁𝑔12) (1 + 49.5𝜖)

and

fl(|𝑔11 | + |𝑔12 |) = (| fl(𝑣11𝑐11) | + | fl(fl(𝑣11𝑐12) + fl(𝑣21𝑐22)) |) (1 + 𝜖)
= |𝑣11𝑐11(1 + 48.5𝜖) | + |𝑣11𝑐12(1 + 49.5𝜖) + 𝑣21𝑐22(1 + 49.5𝜖) |
= |𝑔11 + 48.5𝜖ˆ︁𝑔11 | + |𝑔12 + 49.5𝜖ˆ︁𝑔12 |
= (|𝑔11 | + |𝑔12 |) (1 + 49.5𝜖𝜂𝑔),

so that

𝜂𝑔 = fl
(︃

(ˆ︁𝑔11 +ˆ︁𝑔12) (1 + 49.5𝜖)
(|𝑔11 | + |𝑔12 |) (1 + 49.5𝜖𝜂𝑔)

)︃
= 𝜂𝑔

1 + 50.5𝜖
1 + 49.5𝜖𝜂𝑔

.

The derivation of the relation between 𝜂ℎ and 𝜂ℎ is analogous. The proof for 𝜂𝑘, 𝜂𝑘 and 𝜂𝑙, 𝜂𝑙 is
similar. □

Corollary 25. Under the same assumptions as in Proposition 24, solving (15) for 𝜂𝑔 and 𝜂ℎ yields

𝜂𝑔 = 𝜂𝑔 (1 + 50.5𝜖1 − 49.5𝜖2𝜂𝑔)−1 and 𝜂ℎ = 𝜂ℎ(1 + 52.5𝜖3 − 51.5𝜖4𝜂ℎ)−1.

Proposition 24 shows that the computed 𝜂s approximate their exact counterparts if 𝝐𝜂max ≪ 1.
Although we generally do not know the exact 𝜂s in practice, we still expect this result to hold if
𝝐𝜂max ≪ 1.

Now that we know the relation between the 𝜂s and 𝜂s, we can use bounds for the former to
inform us of the behavior of the latter. The next two propositions and the corollary show that
bounding the 𝜂s from below and in terms of each other is straightforward.

Proposition 26. It holds that 𝜂𝑔, 𝜂ℎ, 𝜂𝑘, 𝜂𝑙 ≥ 1.

26

Proof. Using the triangle inequality we see that

𝜂𝑔 =
|𝑣11 | |𝑐11 | + |𝑣11 | |𝑐12 | + |𝑣21 | |𝑐22 |
|𝑣11 | |𝑐11 | + |𝑣11𝑐12 + 𝑣21𝑐22 |

≥ |𝑣11 | |𝑐11 | + |𝑣11 | |𝑐12 | + |𝑣21 | |𝑐22 |
|𝑣11 | |𝑐11 | + |𝑣11 | |𝑐12 | + |𝑣21 | |𝑐22 |

= 1.

The proof for the remaining 𝜂s is similar. □

Lemma 27. For any 2 × 2 upper-triangular matrix 𝐴, the singular values of 𝐴 equal the singular
values of |𝐴|.

Proof. Compare the eigenvalues of 𝐴𝑇𝐴 and |𝐴|𝑇 |𝐴|. □

Proposition 28. If 𝜂𝑙, 𝜂ℎ < ∞ and 𝜂𝑔, 𝜂𝑘 < ∞, then

1
2
𝜅(𝐴)−1𝜂𝑙 ≤ 𝜂ℎ ≤ 2𝜅(𝐴)𝜂𝑙 and

1
2
𝜅(𝐴)−1𝜂𝑔 ≤ 𝜂𝑘 ≤ 2𝜅(𝐴)𝜂𝑔,

respectively.

Proof. From 𝜂ℎ = ∥ˆ︁𝐻𝒆2∥1/∥𝐻𝒆2∥1 and 𝜂𝑙 = ∥ˆ︁𝐿𝒆2∥1/∥𝐿𝒆2∥1 we get

𝜂ℎ ≤
√

2
∥ˆ︁𝐻𝒆2∥2

∥𝐻𝒆2∥2
≤
√

2
𝜎max(| adj(𝐴) |)
𝜎min(adj(𝐴))

∥ˆ︁𝐿𝒆2∥2

∥𝐿𝒆2∥2
≤ 2𝜅(𝐴)𝜂𝑙

and

𝜂ℎ ≥
1
√

2
∥ˆ︁𝐻𝒆2∥2

∥𝐻𝒆2∥2
≥ 1

√
2
𝜎min(| adj(𝐴) |)
𝜎max(adj(𝐴))

∥ˆ︁𝐿𝒆2∥2

∥𝐿𝒆2∥2
≥ 1

2
𝜅(𝐴)−1𝜂𝑙 .

The proof for the bounds with 𝜂𝑔 and 𝜂𝑘 is analogous. □

Corollary 29. It follows from the above proposition that

1
2
𝜅(𝐴)−1𝜂ℎ ≤ 𝜂𝑙 ≤ 2𝜅(𝐴)𝜂ℎ and

1
2
𝜅(𝐴)−1𝜂𝑘 ≤ 𝜂𝑔 ≤ 2𝜅(𝐴)𝜂𝑘.

Despite the above bounds, we have no upper bound for 𝜂max yet. For example, consider 𝐴 = 𝐼,
𝐵 =

[︂
1 𝜇

0 −𝜇5

]︂
, and 𝐶 =

[︂
1 𝜇−2

0 −𝜇−4

]︂
for some 0 < 𝜇 ≪ 1; then 𝜂𝑔 ≈ 𝜇−2, 𝜂ℎ ≈ 𝜇−4, 𝜂𝑘 ≈ 𝜇−2, 𝜂𝑙 ≈ 𝜇−4,

and 𝜂max ≈ 𝜇−2. The key to bounding 𝜂max, is to permute the columns of 𝑈 and the columns of 𝑉 if
necessary.

Lemma 30. If 𝜇−1 ≤ 𝜂𝑔 < ∞ for some 0 < 𝜇 < 1/2, then ∥𝒆𝑇2 ˆ︁𝐺∥1/∥𝒆𝑇2𝐺∥1 ≤ 2/(1 − 2𝜇). A similar
statement holds for 𝜂𝑙.

Proof. Define ∥ vec(𝐺)∥1 = |𝑔11 | + |𝑔12 | + |𝑔21 | + |𝑔22 |, then

∥ˆ︁𝐺∥1 = ∥|𝑉𝑇 |𝑉𝐺∥ ≤ ∥|𝑉𝑇 |∥1∥𝑉 ∥1∥𝐺∥1 ≤ 2∥ vec(𝐺)∥1.

Now the bound 𝜂𝑔 = ∥𝒆𝑇1 ˆ︁𝐺∥1/∥𝒆𝑇1𝐺∥1 ≥ 𝜇−1 implies that

∥𝒆𝑇1𝐺∥1 ≤ 𝜇∥𝒆𝑇1 ˆ︁𝐺∥1 ≤ 2𝜇∥ vec(𝐺)∥1.

Hence,

∥𝒆𝑇2𝐺∥1 = ∥ vec(𝐺)∥1 − ∥𝒆𝑇1𝐺∥1 ≥ (1 − 2𝜇)∥ vec(𝐺)∥1

so that ∥𝒆𝑇2 ˆ︁𝐺∥1/∥𝒆𝑇2𝐺∥1 ≤ 2∥ vec(𝐺)∥1/∥𝒆𝑇2𝐺∥1 = 2/(1 − 2𝜇). □

27

The result of the lemma above implies that working with 𝑈𝐽 and 𝑉𝐽 instead of 𝑈 and 𝑉,
respectively, decreases the value of 𝜂𝑔 (𝜂𝑙) when 𝜂𝑔 > 4 (𝜂𝑙 > 4). However, this postmultiplication
with 𝐽 may interfere with our attempt to minimize the angles of the rotations as described in
Section 4, and may thus lead to slower convergence of the implicit Kogbetliantz iteration. Hence,
we should not try to minimize 𝜂max thoughtlessly. A possible solution is to check whether 𝜂max is
larger than some tolerance 𝜏𝜂 ≥ 1, and whether working with 𝑈𝐽 and 𝑉𝐽 reduces 𝜂max. Otherwise,
we should keep the original 𝑈 and 𝑉. This idea leads to the following algorithm.

Algorithm 3 (2 × 2 upper-triangular RSVD (RSVD22-𝜏𝜂)).
Input: 2 × 2 upper-triangular matrices 𝐴, 𝐵, and 𝐶, with 𝐴 nonsingular, and tolerance 𝜏𝜂 ≥ 1.
Output: Orthonormal matrices 𝑃, 𝑄,𝑈, and 𝑉, such that 𝑃𝑇𝐴𝑄, 𝑃𝑇𝐵𝑈, and 𝑉𝑇𝐶𝑄 are lower triangular,
and (𝑉𝑇𝐶𝑄) adj(𝑃𝑇𝐴𝑄) (𝑃𝑇𝐵𝑈) = Σ is diagonal.
1. Follow Lines 1 through 15 of Algorithm 2.
2. Define 𝜂 (1)𝑔 = (ˆ︁𝑔11 +ˆ︁𝑔12)/(|𝑔11 | + |𝑔12 |) and 𝜂 (1)ℎ

= (ˆ︁ℎ12 +ˆ︁ℎ22)/(|ℎ12 | + |ℎ22 |).
3. Define 𝜂 (1)

𝑘
= (ˆ︁𝑘11 + ˆ︁𝑘12)/(|𝑘11 | + |𝑘12 |) and 𝜂 (1)𝑙

= (ˆ︁𝑙12 +ˆ︁𝑙22)/(|𝑙12 | + |𝑙22 |).
4. Define 𝜂 (2)𝑔 = (ˆ︁𝑔21 +ˆ︁𝑔22)/(|𝑔21 | + |𝑔22 |) and 𝜂 (2)ℎ

= (ˆ︁ℎ11 +ˆ︁ℎ21)/(|ℎ11 | + |ℎ21 |).
5. Define 𝜂 (2)

𝑘
= (ˆ︁𝑘21 + ˆ︁𝑘22)/(|𝑘21 | + |𝑘22 |) and 𝜂 (2)𝑙

= (ˆ︁𝑙11 +ˆ︁𝑙21)/(|𝑙11 | + |𝑙21 |).
6. Define 𝜂 (𝑖)max = max{𝜂 (𝑖)𝑔 , 𝜂

(𝑖)
ℎ
} for 𝑖 = 1, 2.

7. if 𝜂 (1)max ≤ 𝜏𝜂 and 𝜂
(1)
max ≤ 𝜂

(2)
max then

8. Let 𝜂𝑔 = 𝜂
(1)
𝑔 , 𝜂ℎ = 𝜂

(1)
ℎ

, 𝜂𝑘 = 𝜂
(1)
𝑘

, and 𝜂𝑙 = 𝜂
(1)
𝑙

.
9. else

10. Let 𝜂𝑔 = 𝜂
(2)
𝑔 , 𝜂ℎ = 𝜂

(2)
ℎ

, 𝜂𝑘 = 𝜂
(2)
𝑘

, and 𝜂𝑙 = 𝜂
(2)
𝑙

.
11. Set 𝑈 = 𝑈𝐽, 𝑉 = 𝑉𝐽, 𝐺 = 𝐽𝑇𝐺, 𝐻 = 𝐻𝐽, 𝐾 = 𝐽𝑇𝐾, and 𝐿 = 𝐿𝐽.
12. endif
13. Follow Lines 18 through 28 of Algorithm 2.

Numerical tests in Section 9 show the trade-off between accuracy and performance for different
values of 𝜏𝜂. For now, the following upper bound on the smallest 𝜂max that we get is more important.

Proposition 31. Define 𝜂 (𝑖)𝑔 , 𝜂 (𝑖)
ℎ
, 𝜂 (𝑖)

𝑘
, and 𝜂 (𝑖)

𝑙
as in Algorithm 3 for 𝑖 = 1, 2, and define the corre-

sponding 𝜂 (𝑖)max as in Definition 19. Then

𝜂min
max = min{𝜂 (1)max, 𝜂

(2)
max} ≤

{︄
4𝜅(𝐴) + 2 if max{𝜂 (1)𝑔 , 𝜂

(1)
𝑙

} < ∞,
8𝜅(𝐴) otherwise.

Proof. Suppose that both 𝜂 (1)𝑔 and 𝜂 (1)
𝑙

are finite and that 𝜂 (1)max > 4𝜅(𝐴) + 2. Then 𝜂 (1)𝑔 > 4𝜅(𝐴) + 2
or 𝜂 (1)

𝑙
> 4𝜅(𝐴) + 2, and we can assume without loss of generality that the first of the two bounds

holds. By applying Lemma 30 we get the bound

𝜂
(2)
𝑔 ≤ 2(1 − 2(4𝜅(𝐴) + 2)−1)−1 =

4𝜅(𝐴) + 2
2𝜅(𝐴) ,

and then from Proposition 28 the bound 𝜂 (2)
𝑘

≤ 4𝜅(𝐴) + 2. Hence, we can conclude that 𝜂 (2)max ≤
4𝜅(𝐴) + 2.

Now suppose 𝜂 (1)𝑔 = ∞ or 𝜂 (1)
𝑙

= ∞ and 𝜂 (1)max > 8𝜅(𝐴), and assume without loss of generality
that 𝜂 (1)𝑔 = ∞; then by Proposition 22 we have that 𝜂 (1)

ℎ
< ∞ and 𝜂 (1)

𝑙
< ∞. Hence, by Definition 19

we must have 𝜂 (1)
ℎ

> 8𝜅(𝐴) or 𝜂 (1)
𝑙

> 8𝜅(𝐴), so that it follows from Corollary 29 and Proposition 28,
respectively, that 𝜂 (1)

𝑙
> 4. The result is that we can invoke Lemma 30 to see that 𝜂 (2)

𝑙
≤ 4, followed

by Proposition 28 to see that 𝜂 (2)
ℎ

≤ 8𝜅(𝐴). Thus, we can conclude that 𝜂 (2)max ≤ 8𝜅(𝐴). □

28

By combining Theorem 20 with the proposition above, we get the following result.

Theorem 32. Suppose that we compute all floating-point operations in Algorithm 3 with a precision
of at least O(𝝐𝜅(𝐴)−1) and use the tolerance 𝜏𝜂 = 8𝜅(𝐴). Then the algorithm computes 𝐴′ stably with
respect to the precision 𝝐.

Theorem 32 shows how to pick the working precision to guarantee an accurate result. But
tying the working precision of the algorithm to the condition number of 𝐴 is impractical and
mathematically inelegant. An alternative without a strong a priori guarantee, is to pick a fixed
working precision independent of 𝜅(𝐴), with two obvious choices. The first choice is to double
the precision, which we can motivate as follows. If 𝐴(1) is the 𝑝 × 𝑞 input matrix that we have at
the beginning of the preprocessing phase; then, with typical bounds, the first compression sets
all singular values smaller than 𝝐max{𝑝, 𝑞}𝜎max(𝐴(1)) to zero. Hence, the resulting 𝐴

(2)
12 has a

condition number bounded by (max{𝑝, 𝑞}𝝐)−1. Note, however, that this does not guarantee that the
condition number of the upper-triangular 2 × 2 matrices 𝐴𝑖 𝑗 from the Kogbetliantz phase have the
same bound. The second choice is to not increase the working precision. As we will see in Section 9,
a large 𝜂max is rare, even for highly ill-conditioned 𝐴, and a large 𝜂min

max even rarer. Furthermore, the
numerical results show that the bound from Theorem 20 is pessimistic, and that the relative errors
do not scale in proportion to 𝜂max. In any case, if we fix the working precision, then we can cheaply
estimate a posteriori whether the computed 𝐴

′
is accurate in two ways. Either by checking if 𝜂max

or max{𝜏𝜂, 𝜂min
max} is sufficiently small, or by checking if | fl(𝑃𝑇𝐴𝑄)12 | is sufficiently small.

This section ends with the following remarkable result for a final bit of insight into the behavior
of the 𝜂s. Although the proof is not obvious, it requires only elementary arithmetic and is omitted
for brevity.

Proposition 33. In exact arithmetic 𝜂𝑔 > 𝜂ℎ and 𝜂𝑙 > 𝜂𝑘 cannot hold simultaneously. Furthermore, if
𝑔11 ≠ 0 and 𝑙22 ≠ 0, then 𝜂𝑔 = 𝜂ℎ and 𝜂𝑙 = 𝜂𝑘 can only hold at the same time if 𝑎12 = 0.

The consequence of the proposition above is that (in exact arithmetic) Algorithm 2 computes
either 𝑃 from 𝐿 or 𝑄 from 𝐺. In other words, 𝑃 and 𝑄 are never computed from 𝐾 = 𝐺 adj(𝐴) and
𝐻 = adj(𝐴)𝐿 at the same time.

6 The extraction phase. In this section we consider the problem of extracting the singular
triplets (𝛼, 𝛽, 𝛾) from the upper-triangular matrices (𝐴, 𝐵, 𝐶) = (𝑆𝐷𝛼𝑇, 𝑆𝐷𝛽, 𝐷𝛾𝑇). Without loss
of generality, we can focus on the diagonal entries and drop the indices, and consider 𝑎 = 𝑠𝑡𝛼,
𝑏 = 𝑠𝛽, 𝑐 = 𝑡𝛾, and 𝜎 = 𝑎/(𝑏𝑐) = 𝛼/(𝛽𝛾) for unknown 𝑠, 𝑡, 𝛼, 𝛽, and 𝛾. Typical treatment of the
RSVD imposes the condition 𝛼2 + 𝛽2 + 𝛾2 = 1, but this condition alone generally does not define
the singular triplet uniquely. For example, for nonzero 𝑏 and 𝑐 we can swap the values of 𝛽 and
𝛾 and adjust 𝑠 and 𝑡 accordingly. Another example is when 𝑎 = 𝑏 = 𝑐 = 1; then we can pick any
𝛾2 ∈ (0, 1) and let

𝛼2 = 𝛾2 1 − 𝛾2

1 + 𝛾2 , 𝛽2 =
1 − 𝛾2

1 + 𝛾2 , 𝑠 = 𝛽−1, and 𝑡 = 𝛾−1.

Which further conditions we should impose to make the triplet (𝛼, 𝛽, 𝛾) well defined, are unclear. It
is also unclear how to compute the triplets in a numerically sound way.

As an alternative, we propose to impose the condition

(16) 𝛼2 + 𝛽2𝛾2 = 1

for the normalization of the triplets for the following reasons.

29

• This condition is the correct homogeneous formulation corresponding to the fraction 𝜎 =

𝛼/(𝛽𝛾), and uniquely defines the pair (𝛼, 𝛽𝛾).

• We know that the RSVs correspond to the nonnegative eigenvalues of the pencil
[︁ 0 𝐴
𝐴∗ 0

]︁
−

𝜆
[︁
𝐵𝐵∗ 0
0 𝐶∗𝐶

]︁
; see, e.g., [28, p. 193]. Solving this generalized eigenvalue problem yields the

eigenpairs (𝛼,±𝛽𝛾).

• This condition allows us to express the generalized singular pairs of a QSVD (i.e., an RSVD
with 𝐵 = 𝐼) in terms of restricted singular triplets with 𝛽 = 1 (and 𝑠 = 1).

• Triplets corresponding to zero and infinite singular values can be written as (0, 1, 1), (1, 0, 0),
(1, 0, 1), and (1, 1, 0), and all satisfy (16).

• As shown below, we can impose a simple condition to make computing (𝛼, 𝛽, 𝛾), 𝑠, and 𝑡 with
(16) elegant and straightforward.

• With (16), the pair (𝛼, 𝛽𝛾) is invariant under the scaling (𝜆𝐴, 𝜆 𝑝𝐵, 𝜆𝑞𝐶) of the matrix triplet
(𝐴, 𝐵, 𝐶), where 𝜆 > 0 and 𝑝 + 𝑞 = 1.

Some flexibility is still left when it comes to computing 𝛽, 𝛾, 𝑠, and 𝑡. One option is to take
|𝑠| = |𝑡 |, or more generally |𝑠|𝑞 = |𝑡 |𝑝 with 𝑝 + 𝑞 = 1, so that

𝑎2 + 𝑏2𝑐2 = (𝛼2 + 𝛽2𝛾2) (𝑠𝑡)2 = |𝑠|2/𝑝 = |𝑡 |2/𝑞,

and

𝛼 = |𝑎| (𝑎2 + 𝑏2𝑐2)−1/2, 𝛽 = |𝑏| (𝑎2 + 𝑏2𝑐2)−𝑝/2, and 𝛾 = |𝑐| (𝑎2 + 𝑏2𝑐2)−𝑞/2.

Although we have some flexibility when picking 𝑝 and 𝑞, the choice 𝑝 = 𝑞 = 1/2 is the most natural
in absence of an application specific preference. This choice also allows us to reliably compute the
triplets (𝛼, 𝛽, 𝛾) in floating-point arithmetic for a wide range of triplets (𝑎, 𝑏, 𝑐) with the algorithm
below. A key part of the algorithm is the function hypot(𝑥, 𝑦), which computes (𝑥2+ 𝑦2)−1/2 without
unnecessary overflow or underflow for 𝑥, 𝑦 ∈ ℝ. The problem that the algorithm addresses, is that
we cannot use hypot(|𝑎|, |𝑏| |𝑐|) directly if the product |𝑏| |𝑐| overflows or underflows. Hence, the
algorithm only applies hypot to |𝑎| and |𝑏| |𝑐| directly if the latter product is finite and nonzero in
floating-point arithmetic. Otherwise, the algorithm first rescales the input triplet by exploiting the
scaling invariance.

Algorithm 4 (Extracting restricted singular triplets.).
Input: A triplet (𝑎, 𝑏, 𝑐), where max{|𝑎|, |𝑏|, |𝑐|} < ∞ and 𝑎 ≠ 0.
Output: A triplet (𝛼, 𝛽, 𝛾) satisfying 𝛽𝛾/𝛼 = 𝑏𝑐/𝑎 and 𝛼2 + 𝛽2𝛾2 = 1.
1. if 0 < fl(|𝑏| |𝑐|) < ∞ then
2. Let |𝑠𝑡 | = hypot(|𝑎|, |𝑏| |𝑐|).
3. Let 𝛼 = |𝑎|/|𝑠𝑡 |, 𝛽 = |𝑏|/|𝑠𝑡 |1/2, and 𝛾 = |𝑐|/|𝑠𝑡 |1/2.
4. else if |𝑎|1/2 ≥ max{|𝑏|, |𝑐|} then
5. Let 𝑏′ = |𝑏|/|𝑎|1/2, 𝑐′ = |𝑐|/|𝑎|1/2, and |𝑠𝑡 | = (1 + (𝑏′𝑐′)2)1/2.
6. Let 𝛼 = 1/|𝑠𝑡 |, 𝛽 = 𝑏′/|𝑠𝑡 |1/2, and 𝛾 = 𝑐′/|𝑠𝑡 |1/2.
7. else if |𝑏| ≥ max{|𝑎|1/2, |𝑐|} then
8. Let 𝑎′ = (|𝑎|/|𝑏|)/|𝑏|, 𝑐′ = |𝑐|/|𝑏|, and |𝑠𝑡 | = hypot(𝑎′, 𝑐′).
9. Let 𝛼 = 𝑎′/|𝑠𝑡 |, 𝛽 = 1/|𝑠𝑡 |1/2, and 𝛾 = 𝑐′/|𝑠𝑡 |1/2.

10. else if |𝑐| ≥ max{|𝑎|1/2, |𝑏|} then
11. Let 𝑎′ = (|𝑎|/|𝑐|)/|𝑐|, 𝑏′ = |𝑏|/|𝑐|, and |𝑠𝑡 | = hypot(𝑎′, 𝑏′).
12. Let 𝛼 = 𝑎′/|𝑠𝑡 |, 𝛽 = 𝑏′/|𝑠𝑡 |1/2, and 𝛾 = 1/|𝑠𝑡 |1/2.
13. end

30

7 The postprocessing phase. If the implicit Kogbetliantz iteration from Section 4 converges,
then we get the Schur-form RSVD from Theorem 7. Combined with the extraction from Section 6,
this form is already useful in its own right, as explained in Section 2. However, if we want the
full decomposition from Theorem 1 or Corollary 4, or any of the individual factors Σ𝛼, Σ𝛽, Σ𝛾, 𝑋 ,
𝑌 , 𝑆, or 𝑇 , then further postprocessing is necessary. This necessary postprocessing is nontrivial in
the most general case, and requires that the output of the implicit Kogbetliantz iteration is of the
form described by Proposition 13. Moreover, some of the postprocessing steps are troublesome in
floating-point arithmetic, e.g., due to sensitivity to perturbations, which may affect their reliability.
Hence, we consider the postprocessing steps in exact arithmetic in Section 7.1, and discuss some of
the numerical challenges in floating-point arithmetic in Section 7.2.

7.1 Postprocessing in exact arithmetic. Suppose that 𝐴, 𝐵, and 𝐶 are as in (11), then the first step
of the preprocessing phase is to use the transformations from the proof of Proposition 13 to get the
structure from (12). The next step is to extract the nonzero restricted singular triplets 𝐷𝛼, 𝐷𝛽, and
𝐷𝛾 with Algorithm 4, and to let

˜︁Σ𝛼 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐷𝛼

𝐼

𝐼

𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ˜︁Σ𝛽 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐷𝛽 0 0
0 𝐼 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and ˜︁Σ𝛾 = ⎡⎢⎢⎢⎢⎢⎣

𝐷𝛾 0 0 0
0 0 0 0
0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎦ .
Using these Σs, we can decompose our matrix triplet as

(17) 𝐴 = 𝑆˜︁Σ𝛼𝑇, 𝐵 = 𝑆˜︁Σ𝛽, and 𝐶 = ˜︁Σ𝛾𝑇,
where 𝑆 and 𝑇 are upper triangular. In particular, let 𝑆11 = 𝐵11𝐷

−1
𝛽

and 𝑇11 = 𝐷−1
𝛾 𝐶11, so that

𝐴11𝐶
−1
11 = (𝑆11𝐷𝛼𝑇11) (𝑇−1

11 𝐷
−1
𝛾) = 𝑆11𝐷𝛼𝐷

−1
𝛾 = 𝐵11𝐷

−1
𝛽 𝐷𝛼𝐷

−1
𝛾 ,

and define the Schur complement 𝑍1 𝑗 = 𝐴1 𝑗 − 𝐴11𝐶
−1
11𝐶1 𝑗; then

(18) 𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑆11 𝐵12 𝑍13 𝑍14𝐶

−1
44

𝐵22 𝐴23 𝐴24𝐶
−1
44

𝐴33 𝐴34𝐶
−1
44

𝐴44𝐶
−1
44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and 𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑇11 𝐷−1

𝛾 𝐶12 𝐷−1
𝛾 𝐶13 𝐷−1

𝛾 𝐶14

𝐵−1
22 𝐴22 0 0

𝐼 0
𝐶44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To see that these 𝑆 and 𝑇 are correct, consider the leading principal 2 × 2 blocks of 𝐶𝐴−1𝐵, given by[︄
𝐶11𝐴

−1
11 𝐵11 0

0

]︄
=

[︄
𝐶11 𝐶12

0

]︄ [︄
𝐴−1

11 −𝐴−1
11 𝐴12𝐴

−1
22

𝐴−1
22

]︄ [︄
𝐵11 𝐵12

𝐵22

]︄
=

[︄
𝐶11𝐴

−1
11 𝐵11 𝐶11𝐴

−1
11 𝐵12 − 𝐶11𝐴

−1
11 𝐴12𝐴

−1
22 𝐵22 + 𝐶12𝐴

−1
22 𝐵22

0

]︄
.

Since the (1, 2) block must be zero, we have that 𝐴12 = 𝐴11𝐶
−1
11𝐶12 + 𝐵12𝐵

−1
22 𝐴22, which we can use

to verify that[︄
𝑆11 𝐵12

𝐵22

]︄ [︄
𝐷𝛼

𝐼

]︄ [︄
𝑇11 𝐷−1

𝛾 𝐶12

𝐵−1
22 𝐴22

]︄
=

[︄
𝐴11 𝐴11𝐶

−1
11𝐶12 + 𝐵12𝐵

−1
22 𝐴22

𝐴22

]︄
31

is equal to the leading principal 2 × 2 blocks of 𝐴. The rest of the proof that 𝑆 and 𝑇 are of the form
in (18) is by direct verification.

Now that we have the decomposition (17), we can plug it back into the Schur-form RSVD from
(3)–(4) to get the triplet (𝐴(ℓ) , 𝐵(ℓ) , 𝐶 (ℓ)). Here, we use a similar notation as in the preprocessing
phase, with a similar numbering of the blocks. Define

(𝑋 (ℓ))−𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼 1
2 𝐴15 𝐵14

𝑆 𝐴25 𝐵24

𝐴35 𝐵34

𝐵44

𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and (𝑌 (ℓ))−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼

𝐶12 𝐶13 𝐶14 𝐶15

𝐴13 𝐴14
1
2 𝐴15

𝑇

𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cf. (7), where 𝑆 and 𝑇 are as in (18), and let

𝐴(ℓ+1) = (𝑋 (ℓ))𝑇𝐴(ℓ)𝑌 (ℓ) , 𝐵(ℓ+1) = (𝑋 (ℓ))𝑇𝐵(ℓ) , and 𝐶 (ℓ+1) = 𝐶 (ℓ)𝑌 (ℓ) .

Then the above three matrices are as in (6), but with 𝐴24, 𝐵23, and 𝐶24 replaced by ˜︁Σ𝛼, ˜︁Σ𝛽, and ˜︁Σ𝛾,
respectively. Hence, with the appropriate block permutations we get the matrices

𝐴(ℓ+2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 𝐷𝛼 0 0 0
0 0 0 𝐼 0 0

0 0 0 0 . . . 0
0 0 0 0 0 𝐼

0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

𝐵(ℓ+2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷𝛽 0 0 0 0 0
0 𝐼 0 0 0 0

𝐵
(ℓ+2)
31 𝐵

(ℓ+2)
32 𝐵

(ℓ+2)
33 𝐵

(ℓ+2)
34 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 𝐼

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

𝐶 (ℓ+2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 𝐼 0 0 0 0 0 0
0 0 𝐷𝛾 0 0 0 0 𝐶

(ℓ+2)
28

0 0 0 0 0 0 𝐼 𝐶
(ℓ+2)
38

0 0 0 0 0 0 0 𝐶
(ℓ+2)
48

0 0 0 0 0 0 0 𝐶
(ℓ+2)
58

0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Next we need to compress [𝐵(ℓ+2)
33 𝐵

(ℓ+2)
34] and [𝐶 (ℓ+2)

48 ; 𝐶 (ℓ+2)
58] (and transfer the transformations

32

“through” 𝐴(ℓ+2)) to get 𝐴(ℓ+3) = 𝐴(ℓ+2) , and 𝐵(ℓ+3) and 𝐶 (ℓ+3) given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷𝛽 0 0 0 0 0
0 𝐼 0 0 0 0

𝐵
(ℓ+3)
31 𝐵

(ℓ+3)
32 𝑅𝐵 0 0 0

𝐵
(ℓ+3)
41 𝐵

(ℓ+3)
42 0 0 0 0

0 0 0 0 0 0
...

...
...

...
...

...

0 0 0 0 0 0
0 0 0 0 0 𝐼

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 𝐼 0 0 · · · 0 0 0 0
0 0 𝐷𝛾 0 · · · 0 0 𝐶

(ℓ+3)
29 𝐶

(ℓ+3)
2,10

0 0 0 0 · · · 0 𝐼 𝐶
(ℓ+3)
39 𝐶

(ℓ+3)
3,10

0 0 0 0 · · · 0 0 𝑅𝐶 0
0 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

respectively. Next, take (𝑋 (ℓ+3))−𝑇 as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼 0 0 0 0 0 −𝐷𝛼𝐷−1
𝛾 𝐶29𝑅

−1
𝐶 −𝐷𝛼𝐷−1

𝛾 𝐶2,10 0 0
0 𝐼 0 0 0 0 0 0 0 0

𝐵31𝐷
−1
𝛽

𝐵32 𝑅𝐵 0 0 0 0 0 0 0

𝐵41𝐷
−1
𝛽

𝐵42 0 𝐼 0 0 0 0 0 0

0 0 0 0 𝐼 0 0 0 0 0
0 0 0 0 0 𝐼 −𝐶39𝑅

−1
𝐶 −𝐶3,10 0 0

0 0 0 0 0 0 𝑅−1
𝐶 0 0 0

0 0 0 0 0 0 0 𝐼 0 0
0 0 0 0 0 0 0 0 𝐼 0
0 0 0 0 0 0 0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and (𝑌 (ℓ+3))−1 as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼 0 0 0 0 0 0 0 0 0
0 𝐼 0 0 0 0 0 0 0 0
0 0 𝐼 0 0 0 0 0 𝐷−1

𝛾 𝐶29 𝐷−1
𝛾 𝐶2,10

0 0 0 𝐼 0 0 0 0 0 0
0 0 −𝑅−1

𝐵 𝐵31𝐷
−1
𝛽
𝐷𝛼 −𝑅−1

𝐵 𝐵32 𝑅−1
𝐵 0 0 0 −𝑅−1

𝐵 𝐵31𝐷
−1
𝜎 𝐶29 −𝑅−1

𝐵 𝐵31𝐷
−1
𝜎 𝐶2,10

0 0 −𝐵41𝐷
−1
𝛽
𝐷𝛼 −𝐵42 0 𝐼 0 0 −𝐵41𝐷

−1
𝜎 𝐶29 −𝐵41𝐷

−1
𝜎 𝐶2,10

0 0 0 0 0 0 𝐼 0 0 0
0 0 0 0 0 0 0 𝐼 𝐶39 𝐶3,10

0 0 0 0 0 0 0 0 𝑅𝐶 0
0 0 0 0 0 0 0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where we dropped the superscript indices to save horizontal whitespace and 𝐷−1
𝜎 = 𝐷−1

𝛽
𝐷𝛼𝐷

−1
𝛾 , and

compute 𝐴(ℓ+4) = Σ𝛼, 𝐵(ℓ+4) = Σ𝛽, and 𝐶 (ℓ+4) = Σ𝛾 with a transformation like in (17). Here, 𝑋 (ℓ+3)

is upper triangular if 𝑝1 = 0 in Theorem 7, and 𝑌 (ℓ+3) is lower triangular if 𝑞5 = 0 in Theorem 7.
We can always assume that we have the former case if we wish, by transforming the input triplet as
discussed at the end of the preprocessing phase.

33

7.2 Challenges in floating-point arithmetic. If 𝐵 or 𝐶 is singular before the application of the
implicit Kogbetliantz iteration, then we may have 𝑚𝑖𝑖 after convergence that should have been
zero in exact arithmetic, but are nonzero due to roundoff errors. It follows that in floating-point
arithmetic 𝑀 lacks the desired form of Proposition 12, or at least, has more nonzeros than it should.
Consider a 3 × 3 example, where 𝐴 = 𝐼 and 𝐶, 𝐵, and 𝑀 are⎡⎢⎢⎢⎢⎢⎣

𝑐
(1)
11 𝑐

(1)
12 𝑐

(1)
13

𝑐
(1)
22 𝑐

(1)
23

𝑐
(1)
33

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
𝑏
(1)
11 𝑏

(1)
12 𝑏

(1)
13

0 0
0

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝑚

(1)
11 𝑚

(1)
12 𝑚

(1)
13

0 0
0

⎤⎥⎥⎥⎥⎥⎦ .
After eliminating the (1, 2) element of 𝑀 in exact arithmetic we get⎡⎢⎢⎢⎢⎢⎣

𝑐
(2)
11 0 𝑐

(2)
13

𝑐
(2)
21 𝑐

(2)
22 𝑐

(2)
23

𝑐
(2)
33

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
𝑏
(2)
11 0 𝑏

(2)
13

𝑏
(2)
21 0 𝑏

(2)
23

0

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝑚

(2)
11 0 𝑚

(2)
13

0 0
0

⎤⎥⎥⎥⎥⎥⎦ .
Eliminating the (1, 3) element gives us⎡⎢⎢⎢⎢⎢⎣

𝑐
(3)
11 0 0
𝑐
(3)
21 𝑐

(3)
22 𝑐

(3)
23

𝑐
(3)
31 𝑐

(3)
33

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
𝑏
(3)
11 0 0
𝑏
(3)
21 0 0
𝑏
(3)
31 0

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝑚

(3)
11 0 0

0 0
0

⎤⎥⎥⎥⎥⎥⎦ ,
where 𝑏(2)23 is eliminated at the same time as 𝑏(2)13 because the vectors [𝑏(2)11 𝑏

(2)
21] and [𝑏(2)13 𝑏

(2)
23] are

parallel. But in floating-point arithmetic we suffer from roundoff errors and can expect to end up
with ⎡⎢⎢⎢⎢⎢⎣

𝑐
(3)
11 0 0
𝑐
(3)
21 𝑐

(3)
22 𝑐

(3)
23

𝑐
(3)
31 𝑐

(3)
33

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
𝑏
(3)
11 0 0
𝑏
(3)
21 𝜖 𝜖

𝑏
(3)
31 𝜖

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝑚

(3)
11 0 0

𝜖 𝜖

𝜖

⎤⎥⎥⎥⎥⎥⎦ ,
where the (1, 2) and (1, 3) elements are explicitly set to zero. Now, we can ensure that 𝑏(3)22 = 𝑏

(3)
33 = 0

by ensuring that Algorithm 2 produces the output of Lemma 11 and by copying the elements of the
2 × 2 results back to the larger matrices. The necessary changes to Algorithm 2 are to explicitly set
𝑔22 = 0 whenever 𝑐11 = 0, and to set 𝑙12 = 0 whenever 𝑏22 = 0. Still, this does not take care of the
nonzero element 𝑏(3)23 , and at the end of the cycle we end up with a second nonzero on the diagonal
of 𝐵 and 𝑀. Moreover, explicitly zeroing 𝑔22 and 𝑙12 is not automatically better than not doing so if
we consider cases with underflow.

For 𝐴 we face the opposite problem. If 𝐴 is severely ill-conditioned, then one of its 2 × 2
submatrices may become singular by applying the rotations. Both the order of evaluation and
how the rotations are applied may affect the outcome in these cases. For more information on the
latter, see [14, Sec. 3]. This again shows that the condition numbers of the 2-by-2 matrices 𝐴𝑖 𝑗 are
important, as we already know from Section 5.

A naive way to get rid of the unwanted nonzeros is the following: sort the diagonal entries
of 𝑀 by magnitude after convergence by picking 𝑈 = 𝑉 = 𝐼 or 𝑈 = 𝑉 = 𝐽 in the 2-by-2 RSVD
algorithm. Then set diagonal entries, and their corresponding rows, to zero if they are below some
threshold, and follow the steps at the end of Section 4.2 with similar thresholding. This strategy
appears reasonable at first sight since the |𝑚𝑖𝑖 | are computed to approximate the singular values
of 𝐶𝐴−1𝐵. But 𝑀 is a product of matrices and a rank decision based on a simple threshold is
even less reliable than usual. For example, suppose that 𝐴 = 𝐼 and 𝐵 = 𝐶 = diag(1, 10−10); then

34

𝑀 = 𝐶𝐴−1𝐵 = diag(1, 10−20) is numerically singular (in IEEE 754 double precision) for a typical
threshold like 2𝝐, even though 𝐵 and 𝐶 are numerically nonsingular. Another example is with 𝐴 = 𝐼,
𝐵 = diag(1, 10−20), and 𝐶 = diag(1, 1020); now 𝑀 = 𝐼 looks nonsingular, while 𝐵 and 𝐶 are both
numerically singular.

The latter of the two examples above is an example of ill-conditioned restricted singular values,
e.g., a relative perturbation of 10−15 in either 𝐵 or 𝐶 may result in a relative perturbation of 105 in
𝑀. Still, declaring the small relative entries of 𝐵 and 𝐶 to be zero is not automatically reasonable,
despite the unreliable entries of 𝑀.

Another issue is that the implicit Kogbetliantz iteration is not rank revealing for 𝐵 and 𝐶 in
general. For example, if 𝐶 (0) =

[︁
1 1010

0 1

]︁
, 𝐴(0) = 𝐼 ∈ 𝑅2×2, and 𝐵(0) = 0 ∈ 𝑅2×2. Then in the odd

cycle 𝑄 (0) zeros the (1, 2) entry of 𝐶 (0) . Hence, 𝐵(1) = (𝐶 (0)𝑄 (0))𝑇 so that (𝑃 (1))𝑇 = 𝑄 (0) , and thus
𝐶 (2) = ((𝑃 (1))𝑇𝐵(1))𝑇 = 𝐶 (0) . This example also demonstrates that it does not suffice to just look at
the diagonal entries. The diagonal entries of 𝐶 (0) are both 1, but the condition number of 𝐶 (0) is
approximately 1020.

Now suppose that we have decided that both 𝑚𝑖𝑖 and 𝑚 𝑗 𝑗 should be zero. If we set diagonal
elements of 𝐵 or 𝐶 to zero without doing anything else, then we do not automatically get 𝑚𝑖 𝑗 = 0.
That is, we need to be careful not to introduce new nonzeros while zeroing elements.

Although the examples above are not exhaustive, it should be clear by now that determining
which entries of 𝐵, 𝐶, and 𝑀 should be zero is a nontrivial problem. Similar problems exist for the
generalized eigenvalue problem (see, for example, Stewart and Sun [27, Ch. 6]), and their solutions
are outside the scope of this work. Although it may appear that Zha’s algorithm and the algorithm
of Chu et al. do not suffer from these issues, similar problems hide inside the rank decisions in
their preprocessing phases. The difference is that we move part of these rank-decision woes to the
postprocessing that comes after the Kogbetliantz phase, and which we can omit if the Schur-form
RSVD is sufficient for our needs. Furthermore, we are in a better position to spot sensitivity issues
after the Kogbetliantz phase and with the help of Algorithm 4.

8 Nonorthogonal transformations. In the first step of the preprocessing phase we compress 𝐴
using orthonormal transformations that we compute with some URV decomposition. We can some-
times do better, for example for graded matrices, if we allow arbitrary nonsingular transformations.
Then we can replace the URV decomposition by a rank-reveal LU or LDU decomposition, or some
other rank-revealing decomposition. This is also what Drmač’s algorithm for the RSVD [15] uses.
The algorithm below summarizes the modified algorithm for a simplified input.

Algorithm 5 (Nonorthogonal RSVD).
Input: Square and upper-triangular 𝑘 × 𝑘 matrices 𝐴, 𝐵, 𝐶, and 𝐴 nonsingular.
Output: Nonsingular matrices 𝑋 and 𝑌 , and orthonormal matrices 𝑈 and 𝑉, such that 𝑋𝑇𝐴𝑌 , 𝑋𝑇𝐵𝑈,
and 𝑉𝑇𝐶𝑌 are upper-triangular, and 𝑉𝑇𝐶𝐴−1𝐵𝑈 is diagonal.
1. Compute 𝐷𝐵 = diag(∥𝒆𝑇

𝑖
𝐵∥) and 𝐷𝐶 = diag(∥𝐶𝒆𝑖∥).

2. Set 𝐴1 = 𝐷−1
𝐵 𝐴𝐷−1

𝐶 , 𝐵1 = 𝐷−1
𝐵 𝐵, and 𝐶1 = 𝐶𝐷−1

𝐶 .
3. Compute the LDU decomposition Π𝑟𝐴1Π𝑐 = 𝐿𝐴𝐷𝐴𝑈𝐴 with full pivoting.
4. Compute the RQ decomposition 𝐿−1

𝐴 Π𝑟𝐵1 = 𝑅𝐵𝑄
𝑇
𝐵.

5. Compute the QR decomposition 𝐶1Π𝑐𝑈
−1
𝐴 = 𝑄𝐶𝑅𝐶 .

6. Use Algorithm 1 to compute 𝑈, 𝑉, 𝑃, and 𝑄 such that 𝑃𝑇𝐷𝐴𝑄, 𝑃𝑇𝑅𝐵𝑈,
and 𝑉𝑇𝑅𝐶𝑄 are upper triangular, and 𝑉𝑇𝑅𝐶𝐷−1

𝐴 𝑅𝐵𝑈 is diagonal.
7. Accumulate 𝑈 = 𝑄𝐵𝑈, 𝑉 = 𝑄𝐶𝑉, 𝑋𝑇 = 𝑃𝑇 𝐿−1

𝐴 Π𝑟𝐷
−1
𝐵 , and 𝑌 = 𝐷−1

𝐶 Π𝑐𝑈
−1
𝐴 𝑄.

The benefit of Algorithm 5 is that it does not just produce orthonormal 𝑈 and 𝑉 such that
𝑉𝑇𝐶𝐴−1𝐵𝑈 is diagonal. It also produces nonsingular 𝑋 and 𝑌 such that 𝑋𝑇𝐴𝑌 , 𝑋𝑇𝐵𝑈, and 𝑉𝑇𝐶𝑌 are
upper triangular. Although Drmač does not discuss it, we can compute such 𝑋 and 𝑌 a posteriori

35

when using his algorithm. The problem then is that the necessary computations are nontrivial when
𝐵 and 𝐶 are nonsingular, and we run into some of the challenges from Section 7.2.

9 Numerical experiments. Our numerical testing consists of three parts. In the first part, we
test Algorithm 3 and plot the distribution of the largest magnitudes of the computed (1, 2) entries,
the largest relative errors, and the values of the 𝜂maxs. We do this for both 𝜏𝜂 = 1 and 𝜏𝜂 = ∞.
That is, both when we always change the columns of 𝑈 and 𝑉 if it improves 𝜂max, and when we
never change the columns. We compare the results with similar results from Zha’s method. In the
second part we consider nonsingular and upper-triangular 𝑛 × 𝑛 matrix triplets, and again plot the
distribution of the largest magnitudes of (1, 2) elements and the 𝜂maxs, but not the relative errors.
This time, we test more tolerances than just 𝜏𝜂 = 1 and 𝜏𝜂 = ∞, and try to see how the value of 𝜏𝜂
affects the accuracy and the rate of convergence of the implicit Kogbetliantz iteration. In the third
and final part, we compare the difference in accuracy between Algorithm 3, Zha’s method [29],
Drmač’s method [15], and the method from Chu, De Lathauwer, and De Moor [8]. We do this just
for a small class of matrices for brevity.

For the standard linear algebra routines, such as matrix multiplication, and matrix decomposi-
tions, such as QR with column pivoting and the Jacobi SVD, we use Eigen [20]. For the high-precision
arithmetic we use Boost Multiprecision [24], which we can use in combination with Eigen in a
straightforward manner.

9.1 Testing 2-by-2 RSVDs. We can test Algorithm 3 for a given matrix triplet by computing its result
both with double-precision and with high-precision floating-point arithmetic. Then we compare
the results and use the high-precision result in place of the exact result. With this approach, we
need to be careful when dealing with 𝑀, because we need to ensure that the double-precision
and high-precision results approximate the same quantities. Hence, we proceed as follows. First,
we generate 2 × 2 upper-triangular matrices 𝐴, 𝐵, and 𝐶 in double precision. Each entry has the
form 𝑠 · 2𝑝, where the sign 𝑠 a Rademacher distributed random variable and the exponent 𝑝 a
uniform random variable in [−333, 333). The range of 𝑝 is such that the product 𝑀 = 𝐶 adj(𝐴)𝐵,
when computed in higher precision, can still be represented in double precision without overflow
or underflow. Next, we take 𝑀 = fl(𝑀) and use 𝑀 as the input for both the double and the high
precision RSVD computation. This ensures that we compute the SVD of the same matrix in both
cases, and that the high-precision product 𝐶 adj(𝐴)𝐵 approximates the double precision 𝑀 as well
as possible. Since we generate matrices that may have extremely large or small values, we need to
ensure that no overflow, underflow, or other numerical difficulties occur by rejecting samples that
satisfy one or more of the following conditions.

1. The entry 𝑚12 is nonzero and min{|𝑢11 |, |𝑢12 |} = 0 or min{|𝑣11 |, |𝑣12 |} = 0. In this case the
computation of the SVD underflows and the zero entries lack a high-relative precision, which
means that Fact 1 in Theorem 17 does not hold.

2. The bound for the off-diagonal error

fl
(︃

|𝜎12 | + |𝜎21 |
|𝑚11 | + |𝑚12 | + |𝑚22 |

)︃
≤

√
2∥𝐸∥𝐹
∥𝑀∥𝐹

(1 + 4𝝐) ≤ 2∥𝐸∥2

∥𝑀∥2
(1 + 4𝝐) < 281𝝐

does not hold, where

𝐸 = Σ − Σ = fl(𝑉𝑇𝑀𝑈) − 𝑉𝑇𝑀𝑈 = 𝛿𝑉𝑇𝑀𝑈 + 𝑉𝑇𝑀𝛿𝑈 + 𝐹

for some 𝐹 containing roundoff errors. This is because we require 𝑉 and 𝑈 to diagonalize 𝑀
properly, and because we know the facts from the proof of Theorem 17 imply that ∥𝐸∥ ≤

36

(2 · 66 + 2 · 4)𝝐∥𝑀∥ in the absence of underflow and overflow. ⁴.

3. The singular values of 𝑀 are too close to each other, say within a relative distance of 10−14,
in which case the columns of the double and high-precision 𝑈 and 𝑉 may be in a different
order and the results hard to compare.

Rejecting triplets makes the sampling nonuniform, but also allows us to test a larger range of
floating-point numbers as entries of 𝐴, 𝐵, and 𝐶.

10−20 10−14 10−8 10−2

10−7

10−5

10−3

10−1

Largest relative magnitudes 𝑒mag

Fr
ac
tio

n
of

sa
m
pl
es

10−20 10−14 10−8 10−2

10−7

10−5

10−3

10−1

Largest relative errors 𝑒rel

Fr
ac
tio

n
of

sa
m
pl
es

Figure 1: Normalized histograms of the log10 (𝑒mag) (left) and log10 (𝑒rel) (right) of the results from
Algorithm 3 with 𝜏𝜂 = 1 (solid) and 𝜏𝜂 = ∞ (dashed), as well as Zha’s method (dotted). The figures do
not show the individual bars for the histograms to avoid clutter and because each figure shows the results
for three different algorithms. Moreover, the histograms only include samples 𝑒mag, 𝑒rel ≥ 10−24, which
means they only show the tail ends of the true distribution of the samples.

Given the inputs 𝐴, 𝐵, 𝐶, and 𝑀, we compute 𝐴
′
, 𝐵

′
, 𝐶

′
, 𝐻

′
, and 𝐾

′
with Algorithm 3 in double

precision, both with 𝜏𝜂 = 1 and with 𝜏𝜂 = ∞. Then we compute 𝐴′, 𝐵′, 𝐶 ′, 𝐻 ′, and 𝐾 ′ with 100
decimals of precision, while making sure the high-precision computations take the same conditional
branches in the algorithm as the double-precision computations. Given these results, we can compute
the maximum of the relative magnitudes as

𝑒mag = max

{︄
|𝐴′12 |
∥𝐴∥𝐹

,
|𝐵′12 |
∥𝐵∥𝐹

,
|𝐶 ′

12 |
∥𝐶∥𝐹

,
|𝐻 ′

12 |
∥𝐴∥𝐹 ∥𝐵∥𝐹

,
|𝐾 ′

12 |
∥𝐴∥𝐹 ∥𝐶∥𝐹

}︄
.

We can also compute the maximum of the relative errors as

𝑒rel = max

{︄
∥𝐴′ − 𝐴′∥𝐹

∥𝐴∥𝐹
,
∥𝐵′ − 𝐵′∥𝐹

∥𝐵∥𝐹
,
∥𝐶 ′ − 𝐶 ′∥𝐹

∥𝐶∥𝐹
,
∥𝐻 ′ − 𝐻 ′∥𝐹
∥𝐴∥𝐹 ∥𝐵∥𝐹

,
∥𝐾 ′ − 𝐾 ′∥𝐹
∥𝐴∥𝐹 ∥𝐶∥𝐹

}︄
.

Next, we run Zha’s algorithm—which, for nonsingular input, can be thought of as always computing
𝑃 from 𝐺 and 𝑄 from 𝐿 in Algorithm 2 — for comparison and compute the same quantities. For
each set of inputs and outputs we pick the corresponding maxima of the 𝑒mags and the 𝑒rels, for a
total of 109 generated sets, and plot their distributions in Figure 1. We also keep track of the 𝜂max;
see Figure 2.

Figure 1 shows that Algorithm 3 with 𝜏𝜂 = ∞ (which is identical to Algorithm 2) zeroes the
(1, 2) entries with high precision. In fact, even though 𝜂max can become large, as shown in Figure 2,
the largest (1, 2) entry is still O(𝝐). For the relative errors we do see a difference between 𝜏𝜂 = 1
and 𝜏𝜂 = ∞. In particular, the maximum relative errors remain close to 𝝐 when we always let the
algorithm change the columns of 𝑈 and 𝑉 when it improves 𝜂max, while the maximum relative error

⁴The goal of this section is not to verify this claim. Moreover, the proof of this part of Theorem 17 is straightforward
and identical to the proof from Bai and Demmel [4, Thm. 3.1].

37

100 101 102 103 104 105 10610−10

10−7

10−4

10−1

𝜂max
Fr
ac
tio

n
of

sa
m
pl
es

Figure 2: The distribution of 𝜂max in Algorithm 3 with 𝜏𝜂 = 1 (solid) and 𝜏𝜂 = ∞ (dashed).

can become two or three orders of magnitude larger when we never let the algorithm improve 𝜂max.
Still, these larger errors stay small and they are also rare.

The numerical results are an upper bound for the errors that we see in the 𝐴
′
, which is encour-

aging since the error analysis for 𝐴
′
depends on 𝜂max, and none of our bounds suggest that 𝜂max

has to be small. All we know is that 𝜂max ≲ 4𝜅(𝐴) when 𝜏𝜂 = 1, but 𝜅(𝐴) may be over 10400 for the
generated 𝐴s due to the numerical range of their entries. Yet, Figure 2 shows that we can expect
𝜂max ≪ 4𝜅(𝐴) in practice when 𝜏𝜂 = 1. Even when 𝜏𝜂 = ∞, 𝜂max with values larger than O(1) are
rare. Furthermore, even though the largest 𝜂max we get exceeds 105, the largest error in Figure 1 is
considerably smaller than the bound

√
2(44.5 + 342 · 105)𝝐 ≈ 4.8 · 107𝝐 from Theorem 20 (where

the factor
√

2 comes from using the Frobenius norm instead of using the 2-norm).
Zha’s algorithm does not take the 𝜂s into account, and we see that it may have large relative

errors or fail to zero (1, 2) entries as a result. The reason for this is that by ignoring the 𝜂s, the
algorithm effectively always computes 𝑃 from 𝐵𝑈 and 𝑄 from 𝑉𝑇𝐶. This in turn means that the
rotations may be computed from numerical noise, because the elements of the input matrices may
be extremely small or extremely large. Hence, ignoring the 𝜂s should be less of an issue if the input
matrices are well conditioned. Moreover, Figure 1 just shows the tail ends of the error distributions;
hence, the results do not imply that Zha’s algorithm fails to find an accurate solution in, e.g., a third
of the cases.

9.2 Testing the implicit Kogbetliantz iteration. We can test the implicit Kogbetliantz iteration by
computing the RSVs of generated matrices with known restricted singular values and prescribed
condition numbers. Specifically, we wish to generate upper-triangular 𝑛 × 𝑛 matrices

𝐴 = 𝑃𝑆Σ𝛼𝑇𝑄
𝑇 , 𝐵 = 𝑃𝑆Σ𝛽𝑈

𝑇 and 𝐶 = 𝑉Σ𝛾𝑇𝑄
𝑇 ;

where 𝑃, 𝑄, 𝑈, and 𝑉 are orthonormal; 𝑆 and 𝑇 are upper triangular, nonsingular, and such that 𝑠𝑖𝑖 =
𝑡𝑖𝑖 for 𝑖 = 1, . . . , 𝑛; and Σ𝛼 = diag(𝛼1, . . . , 𝛼𝑛), Σ𝛽 = diag(𝛽1, . . . , 𝛽𝑛), and Σ𝛾 = diag(𝛾1, . . . , 𝛾𝑛)
with 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 ≥ 0 and 𝛼2

𝑖
+ 𝛽2

𝑖
𝛾2
𝑖
= 1 for 𝑖 = 1, . . . , 𝑛. Furthermore, we wish to control the condition

numbers of 𝑆 and 𝑇 , and control the ratios between the largest and smallest RSVs, 𝛼s, 𝛽s, and
𝛾s. There exists no unique way to generate such matrices, and we limit the discussion to matrices
randomly generated by the procedure described below.

The first step is to generate the desired RSVs 𝜎𝑖 for 𝑖 = 1, . . . , 𝑛, and compute 𝛼2
𝑖
= 𝜎2

𝑖
(𝜎2

𝑖
+ 1)−1

and 𝛽2
𝑖
𝛾2
𝑖
= (𝜎2

𝑖
+ 1)−1. We need to be careful when picking the 𝜎𝑖, because if all 𝜎𝑖 ≥ 1, then all

𝛼𝑖 are O(1). Likewise, if all 𝜎𝑖 ≤ 1, then all 𝛽𝑖𝛾𝑖 are O(1). These situations are undesirable if we
want a large variation in the range of the 𝛼𝑖 and 𝛽𝑖𝛾𝑖. We can avoid this problem by using a scaled
version of the diagonals generated by LAPACKs xLATME. In particular, given a condition number 𝜅,
we randomly pick one of the following sets of 𝜎𝑖:

1. 𝜎1 =
√
𝜅 and 𝜎2 = . . . 𝜎𝑛 = 1/

√
𝜅;

38

2. 𝜎1 = · · · = 𝜎𝑛−1 =
√
𝜅 and 𝜎𝑛 = 1/

√
𝜅;

3. 𝜎𝑖 = 𝜅1/2−(𝑖−1)/(𝑛−1) ;

4. 𝜎𝑖 = 𝜅1/2(1 − (𝑖 − 1)/(𝑛 − 1) · (1 − 1/𝜅));

5. set the 𝜎𝑖 to random numbers in the interval (𝜅−1/2, 𝜅1/2) such that the log(𝜎𝑖) are uniformly
distributed in the interval (−1/2 log(𝜅), 1/2 log(𝜅)).

While these 𝜎𝑖 determine our 𝛼𝑖 and the products 𝛽𝑖𝛾𝑖, we still need to select the individual values of
𝛽𝑖 and 𝛾𝑖. To do so, we generate random numbers 𝛿𝑖 so that the log(𝛿𝑖) are uniformly distributed in
(−1/8 log(𝜅), 1/8 log(𝜅)), and set 𝛽𝑖 =

√︁
𝛽𝑖𝛾𝑖/𝛿𝑖 and 𝛾𝑖 =

√︁
𝛽𝑖𝛾𝑖 · 𝛿𝑖. The result is that 𝜎1/𝜎𝑛 = 𝜅,

𝛼1/𝛼𝑛 = 𝛽𝑛𝛾𝑛/(𝛽1𝛾1) =
√
𝜅, and the ratios between the largest and smallest largest and smallest

𝛽𝑖s and 𝛾𝑖s are bounded by
√
𝜅.

The next step is to generate suitable 𝑆 and 𝑇 . Exploratory testing showed that xLATME produced
severely ill-conditioned 𝐴, even for small 𝑛. Another idea is to generate ˜︁𝜎𝑖 in the same way as
above, generate random orthonormal [25] ˜︁𝑈 and ˜︁𝑉, and take ˜︁𝑆 as the upper-triangular factor of
the QR decomposition of ˜︁𝑈 diag(˜︁𝜎𝑖)˜︁𝑉. We can generate ˜︁𝑇 likewise, and then compute 𝑆 = ˜︁𝑆𝐷 and
𝑇 = 𝐷−1˜︁𝑇 , where 𝐷 = diag((˜︁𝑡𝑖𝑖/˜︁𝑠𝑖𝑖)1/2). The result is that˜︁𝑠𝑖𝑖˜︁𝑡𝑖𝑖 = 𝑠2

𝑖𝑖
= 𝑡2

𝑖𝑖
, although the condition

numbers of 𝑆 and 𝑇 are no longer exactly equal to the condition numbers of ˜︁𝑆 and ˜︁𝑇 , respectively.
Once we have 𝑆 and 𝑇 , we generate random orthonormal ˜︁𝑃, ˜︁𝑄, ˜︁𝑈, and ˜︁𝑉, and compute ˜︁𝐴 =˜︁𝑃𝑇𝑆Σ𝛼𝑇˜︁𝑄, ˜︁𝐵 = ˜︁𝑃𝑆Σ𝛽˜︁𝑈𝑇 , and ˜︁𝐶 = ˜︁𝑉Σ𝛾𝑇˜︁𝑄𝑇 . The final step to get the triplet (𝐴, 𝐵, 𝐶), is to run

the preprocessing from Section 3 on the triplet (˜︁𝐴, ˜︁𝐵, ˜︁𝐶). Specifically, since 𝐴 is nonsingular, we
can get 𝐴 from ˜︁𝐴 with a QR decomposition, 𝐵 from ˜︁𝐵 with an RQ decomposition, and 𝐶 from an
appropriately transformed ˜︁𝐶 with another QR decomposition.

We generate the input matrices 𝐴, 𝐵, and 𝐶 in high-precision arithmetic, and again with 100
decimals of precision. We denote the 𝜅 used to generate the RSVs by 𝜅𝜎, and the 𝜅 used to generate˜︁𝑆
and ˜︁𝑇 by 𝜅𝑆𝑇 . Then, we run the implicit Kogbetliantz iteration from Algorithm 1 in double precision.
We stop the iterations after at most 50 pairs of cycles, or earlier if we detect convergence after
an even cycle as described in Section 4. In particular, we stop earlier when 𝜌 = max𝑖 𝑗 𝜌𝑖 𝑗 satisfies
0.99𝜌min < 𝜌 < 0.01, where 𝜌𝑖 𝑗 is as in (10). For solving the 2 × 2 RSVD we use Algorithm 3, and
consider the tolerances 𝜏𝜂 = 1, 1.01, 4, 10, 100, 104, 108, ∞. The tolerance 𝜏𝜂 = 4 is of interest
because of Lemma 30, and 𝜏𝜂 = 108 because of the connection between Theorem 32 and because
108 ≈ 𝝐−1/2.

For every input triplet we record the number of cycle pairs before stopping, and also compute
the following quantities. First, the maximum errors in the computed orthogonal matrices given by

𝑒𝑃𝑄𝑈𝑉 = max{∥𝑃𝑇𝑃 − 𝐼∥𝐹 , ∥𝑄
𝑇
𝑄 − 𝐼∥𝐹 , ∥𝑈

𝑇
𝑈 − 𝐼∥𝐹 , ∥𝑉

𝑇
𝑉 − 𝐼∥𝐹}/

√
𝑛.

Second, the maximum errors in the transformations given by

𝑒𝐴𝐵𝐶 = max

{︄
∥𝑃𝑇𝐴𝑄 − 𝐴

′∥𝐹
∥𝐴∥𝐹

,
∥𝑃𝑇𝐵𝑈 − 𝐵

′∥𝐹
∥𝐵∥𝐹

,
∥𝑉𝑇𝐶𝑄 − 𝐶

′∥𝐹
∥𝐶∥𝐹

}︄
,

where 𝐴
′
, 𝐵

′
, and 𝐶

′
are the output matrices of Algorithm 1. Third, 𝑒tril, the largest of the

Frobenius norms of the strictly lower-triangular parts of 𝑃
𝑇
𝐴𝑄, 𝑃

𝑇
𝐵𝑈, and 𝑉

𝑇
𝐶𝑄. And fourth,

𝑒𝜒 = max𝑖∈{1,...,𝑛} 𝜒(𝜎𝑖, 𝜎𝑖), where

𝜒(𝜎, 𝜎) = |𝛼𝛽𝛾 − 𝛼𝛽𝛾 | = |𝜎 − 𝜎|
√

1 + 𝜎2
√︁

1 + 𝜎2
=

|𝜎−1 − 𝜎−1 |
√

1 + 𝜎−2
√︁

1 + 𝜎−2

is the chordal metric and measures the distance between the exact and computed RSVs; see, e.g.,
Stewart and Sun [27, Ch. 6]. See Table 1 for the results.

39

Ta
bl
e
1:

Th
e
re
la
tio

n
be

tw
ee
n
th
e
sw

ap
to
le
ra
nc

e,
th
e
nu

m
be

ro
fi
te
ra
tio

ns
un

til
co
nv

er
ge

nc
e,

an
d
co
rr
es
po

nd
in
g
er
ro
rs
.E

ac
h
en

tr
y
ha

st
he

fo
rm

:m
ea
n
(m

ax
im

um
).
Th

e
m
ea
n
(m

ax
im

um
)
co
nd

iti
on

nu
m
be

rs
of

th
e
ge

ne
ra
te
d
m
at
ric

es
ca
n
be

fo
un

d
in

Ta
bl
e
2.

To
le
ra
nc

e
𝝉 𝜼

𝒏
𝜿
𝑺𝑻

𝜿
𝝈
M
ea

su
re

1
1.
01

4
10

10
2

10
4

10
8

∞

10
10

10
4
pa

irs
of

cy
cl
es

8.
33

(2
9)

5.
66

(1
7)

3.
67

(9
)

3.
67

(9
)

3.
64

(9
)

3.
68

(9
)

3.
65

(9
)

3.
65

(9
)

lo
g 1

0
(𝑒
𝑃
𝑄
𝑈
𝑉
)

−1
4.

9
(−

14
.3
)
−1

4.
9
(−

14
.4
)
−1

5.
0
(−

14
.4
)
−1

5.
0
(−

14
.5
)
−1

5.
0
(−

14
.5
)
−1

5.
0
(−

14
.5
)
−1

5.
0
(−

14
.5
)
−1

5.
0
(−

14
.5
)

lo
g 1

0
(𝑒
𝐴
𝐵
𝐶
)

−1
4.

4
(−

13
.6
)
−1

4.
6
(−

14
.1
)
−1

4.
8
(−

14
.3
)
−1

4.
8
(−

14
.3
)
−1

4.
8
(−

14
.2
)
−1

4.
8
(−

14
.3
)
−1

4.
8
(−

14
.2
)
−1

4.
8
(−

14
.3
)

lo
g 1

0
(𝑒

tr
il)

−1
5.

2
(−

14
.7
)
−1

5.
2
(−

14
.8
)
−1

5.
2
(−

14
.8
)
−1

5.
3
(−

14
.8
)
−1

5.
3
(−

14
.8
)
−1

5.
2
(−

14
.8
)
−1

5.
3
(−

14
.8
)
−1

5.
3
(−

14
.8
)

lo
g 1

0
(𝑒
𝜒
)

−8
.3

4
(−

0.
14

)
−1

5.
3
(−

2.
00

)
−1

5.
5
(−

14
.0
)
−1

5.
5
(−

14
.0
)
−1

5.
5
(−

14
.0
)
−1

5.
5
(−

13
.9
)
−1

5.
5
(−

13
.9
)
−1

5.
5
(−

14
.1
)

10
5

10
4
pa

irs
of

cy
cl
es

8.
27

(3
6)

5.
41

(2
3)

3.
72

(1
1)

3.
66

(1
0)

3.
59

(8
)

3.
58

(9
)

3.
58

(9
)

3.
57

(1
0)

lo
g 1

0
(𝑒
𝑃
𝑄
𝑈
𝑉
)

−1
4.

9
(−

14
.2
)
−1

4.
9
(−

14
.2
)
−1

5.
0
(−

14
.4
)
−1

5.
0
(−

14
.4
)
−1

5.
0
(−

14
.5
)
−1

5.
0
(−

14
.5
)
−1

5.
0
(−

14
.4
)
−1

5.
0
(−

14
.4
)

lo
g 1

0
(𝑒
𝐴
𝐵
𝐶
)

−1
4.

4
(−

13
.6
)
−1

4.
6
(−

13
.8
)
−1

4.
7
(−

14
.3
)
−1

4.
7
(−

14
.3
)
−1

4.
7
(−

14
.3
)
−1

4.
7
(−

14
.3
)
−1

4.
7
(−

14
.2
)
−1

4.
7
(−

14
.3
)

lo
g 1

0
(𝑒

tr
il)

−1
5.

3
(−

14
.6
)
−1

5.
4
(−

14
.5
)
−1

5.
7
(−

14
.9
)
−1

5.
8
(−

14
.8
)
−1

5.
9
(−

14
.8
)
−1

5.
9
(−

14
.8
)
−1

5.
9
(−

14
.9
)
−1

5.
9
(−

14
.8
)

lo
g 1

0
(𝑒
𝜒
)

−7
.5

3
(−

0.
11

)
−1

2.
8
(−

7.
16

)
−1

2.
8
(−

7.
71

)
−1

2.
8
(−

7.
45

)
−1

2.
7
(−

7.
80

)
−1

2.
7
(−

7.
37

)
−1

2.
7
(−

7.
19

)
−1

2.
8
(−

7.
84

)

50
10

10
4
pa

irs
of

cy
cl
es

31
.6

(5
0)

26
.6

(5
0)

4.
43

(1
1)

4.
42

(1
0)

4.
47

(1
0)

4.
44

(1
0)

4.
42

(1
2)

4.
42

(1
1)

lo
g 1

0
(𝑒
𝑃
𝑄
𝑈
𝑉
)

−1
4.

3
(−

13
.8
)
−1

4.
3
(−

13
.8
)
−1

4.
6
(−

14
.2
)
−1

4.
6
(−

14
.2
)
−1

4.
6
(−

14
.1
)
−1

4.
6
(−

14
.2
)
−1

4.
6
(−

14
.2
)
−1

4.
6
(−

14
.1
)

lo
g 1

0
(𝑒
𝐴
𝐵
𝐶
)

−1
3.

4
(−

12
.7
)
−1

3.
5
(−

12
.6
)
−1

4.
2
(−

13
.6
)
−1

4.
2
(−

13
.6
)
−1

4.
2
(−

13
.6
)
−1

4.
2
(−

13
.6
)
−1

4.
2
(−

13
.6
)
−1

4.
2
(−

13
.5
)

lo
g 1

0
(𝑒

tr
il)

−1
4.

6
(−

14
.2
)
−1

4.
6
(−

14
.1
)
−1

4.
8
(−

14
.5
)
−1

4.
8
(−

14
.4
)
−1

4.
8
(−

14
.5
)
−1

4.
8
(−

14
.5
)
−1

4.
8
(−

14
.5
)
−1

4.
8
(−

14
.4
)

lo
g 1

0
(𝑒
𝜒
)

−2
.8

5
(−

0.
02

)
−1

2.
8
(−

0.
87

)
−1

4.
8
(−

13
.9
)
−1

4.
8
(−

13
.8
)
−1

4.
8
(−

13
.9
)
−1

4.
8
(−

13
.9
)
−1

4.
8
(−

13
.9
)
−1

4.
8
(−

13
.9
)

10
5

10
4
pa

irs
of

cy
cl
es

31
.3

(5
0)

24
.9

(5
0)

5.
00

(2
1)

4.
55

(1
3)

4.
31

(1
1)

4.
30

(1
0)

4.
29

(1
1)

4.
29

(1
0)

lo
g 1

0
(𝑒
𝑃
𝑄
𝑈
𝑉
)

−1
4.

3
(−

13
.5
)
−1

4.
3
(−

13
.5
)
−1

4.
6
(−

13
.9
)
−1

4.
6
(−

14
.1
)
−1

4.
6
(−

14
.1
)
−1

4.
6
(−

14
.1
)
−1

4.
6
(−

14
.1
)
−1

4.
6
(−

14
.0
)

lo
g 1

0
(𝑒
𝐴
𝐵
𝐶
)

−1
3.

4
(−

12
.7
)
−1

3.
5
(−

12
.5
)
−1

4.
1
(−

13
.3
)
−1

4.
2
(−

13
.5
)
−1

4.
2
(−

13
.5
)
−1

4.
2
(−

13
.4
)
−1

4.
2
(−

13
.6
)
−1

4.
2
(−

13
.5
)

lo
g 1

0
(𝑒

tr
il)

−1
4.

7
(−

14
.0
)
−1

4.
7
(−

14
.0
)
−1

5.
1
(−

14
.4
)
−1

5.
2
(−

14
.5
)
−1

5.
3
(−

14
.6
)
−1

5.
3
(−

14
.5
)
−1

5.
3
(−

14
.5
)
−1

5.
3
(−

14
.5
)

lo
g 1

0
(𝑒
𝜒
)

−3
.2

2
(−

0.
02

)
−1

0.
7
(−

0.
10

)
−1

2.
5
(−

7.
19

)
−1

2.
5
(−

8.
22

)
−1

2.
5
(−

6.
93

)
−1

2.
5
(−

7.
67

)
−1

2.
5
(−

7.
95

)
−1

2.
5
(−

7.
78

)

40

We see that convergence is slow when 𝜏𝜂 = 1, and that a small tolerance does not improve the
errors. The slow convergence is expected, since we increase the maximum angle of the rotations
whenever we multiply𝑈 and 𝑉 by 𝐽 to improve 𝜂max. As a result, we may not have convergence before
the cutoff point of 50 iterations and thus also have large 𝑒𝜒. That low tolerances do not improve the
remaining errors is more interesting, but may be explained by the following two observations. First,
more roundoff errors get accumulated when we performs more cycles; second, larger values of 𝜂max
do not affect the accuracy of the results. The latter matches with the observations from the previous
section; that is, Algorithm 3 typically computes the 2 × 2 RSVD with high relative accuracy, even
when 𝜏𝜂 = ∞.

The table also shows us that we can dramatically improve the rate of convergence with a small
increase of 𝜏𝜂. For example, we see substantial improvements for 𝜏𝜂 = 1.01 and already achieve a
near optimal rate of convergence for 𝜏𝜂 = 4. The observation that we can get fast convergence for
small tolerances (larger than 1) is expected if we look at Figure 2. In particular, 𝜂max is close to 1
most of the time, and large 𝜂max are so rare that any practical difference between the larger values
of 𝜏𝜂 is would be surprising.

One caveat here is that the results from this section depend on the way we generate the test
matrices, and on the condition numbers we choose. We consider more variations of 𝜅𝑆𝑇 and 𝜅𝜎 in
the next section, of which we only consider the pairs resulting in the best and worst conditioned
matrix triplets in this section. In any case, we make sure to pick the 𝜅s such that 𝜅(𝐴) is never
more than 10−12; see Table 2 for the condition numbers of the matrices generated for the results in
Table 1.

Table 2: The mean (maximum) condition numbers of the matrices generated for the tests/results in Table 1.

𝒏 𝜿𝑺𝑻 𝜿𝝈 log10(𝜿(𝑨)) log10(𝜿(𝑩)) log10(𝜿(𝑪))

10 10 104 2.84 (4.00) 1.86 (3.03) 1.82 (3.20)
10 105 104 9.24 (12.0) 6.31 (9.02) 5.22 (8.69)
50 10 104 2.95 (3.99) 2.07 (2.92) 2.04 (3.05)
50 105 104 9.53 (12.0) 6.60 (8.91) 5.49 (8.49)

9.3 Comparison with other methods. In the last part we preprocessed the triplet (˜︁𝐴, ˜︁𝐵, ˜︁𝐶) in
high-precision arithmetic to get the triplet (𝐴, 𝐵, 𝐶). In this part we generate the former triplet in
the same way, but we do the preprocessing in double-precision arithmetic instead. The purpose of
this change is to try and see how different rank-revealing decompositions of 𝐴 affect the accuracy of
the computed RSVs (even though 𝐴 is full rank). Moreover, we would like to see how these results
compare to the existing methods.

We use three different methods for the preprocessing. The first two methods use the approach
described in Section 3, the first with a QR decomposition with column pivoting for the compression
of 𝐴, and the second with a Jacobi based SVD for the compression of 𝐴. The third method uses an
LDU decomposition as described in Algorithm 5. All three methods use the implicit Kogbetliantz
iteration and Algorithm 3 with 𝜏𝜂 = ∞. For the existing algorithms we have Drmač’s algorithm [15]
and the CSD stage from the algorithm by Chu, De Lathauwer, and De Moor (CLM) [8, Sec. 3.2].
To make the latter as accurate as possible, we implement the required CS decomposition with a
Jacobi-type SVD instead of the QR based approach implied by the authors. We omit the results
of Zha’s algorithm here, because we already have the results from Section 9.1. See Table 3 for an
overview of the results.

The table show that the nonorthogonal preprocessing from Algorithm 5 yields the most accurate
results, or close to the most accurate results. QR with pivoting is slightly behind the former in

41

Table 3: The means (maxima) of log10 (𝑒𝜒) for different preprocessing approaches and RSVD algorithms.

Preprocessing method/RSVD algorithm

𝒏 𝜿𝑺𝑻 𝜿𝝈 ColPivQR SVD LDU Drmač CLM

10 10 104 −15.4 (−13.7) −15.2 (−13.3) −15.4 (−14.1) −15.5 (−14.2) −15.2 (−13.7)
1012 −15.0 (−12.1) −14.8 (−11.5) −15.0 (−12.5) −14.1 (−11.8) −14.5 (−10.8)
1020 −14.3 (−10.4) −14.0 (−9.24) −14.2 (−10.6) −9.93 (−5.34) −13.3 (−8.07)

103 104 −13.0 (−9.50) −12.7 (−8.94) −13.1 (−9.81) −13.1 (−9.81) −12.7 (−9.32)
1012 −13.0 (−8.06) −12.8 (−6.64) −13.1 (−8.24) −12.7 (−8.24) −12.5 (−7.06)

105 104 −9.44 (−4.38) −9.14 (−3.83) −9.54 (−4.71) −9.54 (−4.71) −9.35 (−4.41)

50 10 104 −14.8 (−13.9) −14.4 (−13.0) −14.8 (−13.9) −14.8 (−14.1) −14.6 (−13.9)
1012 −14.7 (−12.6) −14.3 (−11.3) −14.6 (−12.6) −13.0 (−10.1) −14.1 (−11.3)
1020 −13.6 (−10.7) −13.1 (−8.97) −13.5 (−10.9) −8.71 (−5.03) −12.4 (−8.09)

103 104 −13.0 (−10.0) −12.2 (−8.04) −13.1 (−10.3) −13.1 (−10.3) −12.7 (−9.81)
1012 −12.8 (−8.26) −12.2 (−6.32) −12.9 (−8.56) −12.2 (−8.56) −12.3 (−7.52)

105 104 −9.36 (−5.37) −8.46 (−3.55) −9.51 (−5.44) −9.51 (−5.44) −9.20 (−4.96)

accuracy, and the new algorithm is the least accurate when using the SVD in the preprocessing
phase. A possible explanation is that the SVD introduces a larger error than QR with pivoting. If
true, it would suggest an interesting trade-off between a better rank decision with the SVD, and
better performance and more accurate RSVs with the QR decomposition. Drmač’s method does
comparatively well as long as 𝜅𝜎 is not too large, but is well behind in accuracy when 𝜅𝜎 is large.
The results for the method from Chu, De Lathauwer, and De Moor [8] (with the modified CS
decomposition) are between the QR and SVD results in the best case, and slightly worse than the
SVD result in the worst case.

10 Conclusions. This work introduced a new method for computing the RSVD of a matrix triplet
with an implicit Kogbetliantz-type iteration. The main contributions consist of a new generalized
Schur-form RSVD that we can compute with orthonormal transformations only, a new preprocessing
phase that requires fewer transformations and fewer rank decisions than existing methods, and a
new 2 × 2 triangular RSVD algorithm with favorable numerical properties. We found that the latter
is numerically stable in the sense of Theorem 17 and Theorem 32. A further contribution is a new
approach to extract restricted singular triplets. This approach has theoretical and practical benefits,
but requires atypical scaling of the triplets.

We found that the value of 𝜂max is critical in assessing the accuracy of the results computed by
Algorithms 2 and 3. Specifically, we can both use 𝜂max a priori through bounds, and a posteriori as
the amplification factor of the errors in 𝑈 and 𝑉. Numerical experiments show that we can typically
keep the values of the 𝜂max small. In the rare cases that 𝜂max is large, the results show that we can
still expect the 2 × 2 RSVDs to have small backward errors. In fact, none of the results suggests that
the bounds from Section 5 are sharp, and that the bounds are pessimistic in practice. This means
that the numerical results provide empirical evidence that we can have a numerically stable RSVD
without having to increase the working precision for the 2 × 2 RSVD.

Areas where further improvements are desirable or necessary, and potential directions for
future research include the following. Better stopping conditions, a cache friendly and parallelized
implementation of the Kogbetliantz phase, and most of all, a numerically sound postprocessing

42

phase. The latter in particular represents a major deficiency of the new algorithm, although the
postprocessing phase is only necessary to compute the full RSVD. In other words, we may skip the
postprocessing phase in applications where the Schur-form RSVD suffices.

We should also note that there are techniques for and aspects of existing Jacobi methods (for
other matrix decompositions) that we ignored in this paper. These include, for example, the scaling
of the input matrices to avoid overflow or underflow, the effects of diagonal scaling of the input
matrices on the relative accuracy of the results, efficient implementations using blocking for better
cache usage, quasi-cycles for faster convergence, adaptive pivot strategies, whether preconditioning
is possible and useful, the (relative) accuracy of the algorithm as a whole for arbitrary or structured
matrices, etc. See, e.g., [12, 16, 17] and references therein for more information.

11 Acknowledgments. I would like to thank Andreas Frommer and Michiel Hochstenbach for
helpful discussions and their comments.

References.

[1] G. E. Adams, A. W. Bojanczyk, and F. T. Luk, Computing the PSVD of two 2 × 2 triangular
matrices, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 366–382, https://doi.org/10.1137/
s0895479891221575.

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide,
SIAM, Philadelphia, PA, 3 ed., Jan. 1999, https://doi.org/10.1137/1.9780898719604.

[3] Z. Bai, The CSD, GSVD, their applications and computations, Tech. Report 958, University of
Minnesota, 1992, http://hdl.handle.net/11299/1875. IMA Preprint Series.

[4] Z. Bai and J. W. Demmel, Computing the generalized singular value decomposition, SIAM J. Sci.
Comput., 14 (1993), pp. 1464–1486, https://doi.org/10.1137/0914085.

[5] A. W. Bojanczyk, L. Magnus Ewerbring, F. T. Luk, and P. van Dooren, An accurate
product SVD algorithm, Signal Process., 25 (1991), pp. 189–201, https://doi.org/10.1016/
0165-1684(91)90062-n.

[6] R. P. Brent, F. T. Luk, and C. Van Loan, Computation of the generalized singular value
decomposition using mesh-connected processors, in Real-Time Signal Processing VI, no. TR
82-528, SPIE, Nov. 1983, https://doi.org/10.1117/12.936442.

[7] J. P. Charlier, M. Vanbegin, and P. Van Dooren,On efficient implementations of Kogbetliantz’s
algorithm for computing the singular value decomposition, Numer. Math., 52 (1987), pp. 279–
300, https://doi.org/10.1007/bf01398880.

[8] D. Chu, L. De Lathauwer, and B. De Moor, On the computation of the restricted singular
value decomposition via the cosine-sine decomposition, SIAM J. Matrix Anal. Appl., 22 (2000),
pp. 580–601, https://doi.org/10.1137/s0895479898346983.

[9] B. De Moor and H. Zha, A tree of generalizations of the ordinary singular value decomposition,
Linear Algebra Appl., 147 (1991), pp. 469–500, https://doi.org/10.1016/0024-3795(91)
90243-p.

[10] B. L. R. De Moor and G. H. Golub, Generalized singular value decompositions: a proposal for a
standardized nomenclature, Tech. Report NA-89-05, University of Stanford, 1989.

43

https://doi.org/10.1137/s0895479891221575
https://doi.org/10.1137/s0895479891221575
https://doi.org/10.1137/1.9780898719604
http://hdl.handle.net/11299/1875
https://doi.org/10.1137/0914085
https://doi.org/10.1016/0165-1684(91)90062-n
https://doi.org/10.1016/0165-1684(91)90062-n
https://doi.org/10.1117/12.936442
https://doi.org/10.1007/bf01398880
https://doi.org/10.1137/s0895479898346983
https://doi.org/10.1016/0024-3795(91)90243-p
https://doi.org/10.1016/0024-3795(91)90243-p

[11] B. L. R. De Moor and G. H. Golub, The restricted singular value decomposition: Properties
and applications, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 401–425, https://doi.org/10.
1137/0612029.

[12] J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač, Computing the
singular value decomposition with high relative accuracy, Linear Algebra Appl., 299 (1999),
pp. 21–80, https://doi.org/10.1016/s0024-3795(99)00134-2.

[13] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 1204–1245, https://doi.org/10.1137/0613074.

[14] Z. Drmac, Implementation of Jacobi rotations for accurate singular value computation in floating
point arithmetic, SIAM J. Sci. Comput., 18 (1997), pp. 1200–1222, https://doi.org/10.
1137/s1064827594265095.

[15] Z. Drmac, New accurate algorithms for singular value decomposition of matrix triplets,
SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1026–1050, https://doi.org/10.1137/
s0895479897321209.

[16] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm. I, SIAM J. Matrix Anal.
Appl., 29 (2008), pp. 1322–1342, https://doi.org/10.1137/050639193.

[17] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm. II, SIAM J. Matrix Anal.
Appl., 29 (2008), pp. 1343–1362, https://doi.org/10.1137/05063920x.

[18] R. D. Fierro, P. C. Hansen, and P. S. K. Hansen, UTV tools: Matlab templates for rank-
revealing UTV decompositions, Numer. Algorithms, 20 (1999), pp. 165–194, https://doi.
org/10.1023/a:1019112103049.

[19] G. E. Forsythe and P. Henrici, The cyclic Jacobi method for computing the principal values of
a complex matrix, Trans. Amer. Math. Soc., 94 (1960), pp. 1–1, https://doi.org/10.1090/
s0002-9947-1960-0109825-2.

[20] G. Guennebaud, B. Jacob, et al., Eigen v3. http://eigen.tuxfamily.org, 2010.

[21] E. R. Hansen, On cyclic Jacobi methods, J. Soc. Indust. Appl. Math., 11 (1963), pp. 448–459,
https://doi.org/10.1137/0111032.

[22] M. T. Heath, A. J. Laub, C. C. Paige, and R. C. Ward, Computing the singular value decompo-
sition of a product of two matrices, SIAM J. Sci. and Stat. Comput., 7 (1986), pp. 1147–1159,
https://doi.org/10.1137/0907078.

[23] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, 2 ed., Jan. 2002, https:
//doi.org/10.1137/1.9780898718027.

[24] J. Maddock, C. Kormanyos, et al., Boost multiprecision. https://www.boost.org, 2013.

[25] F. Mezzadri, How to generate random matrices from the classical compact groups, Notices Amer.
Math. Soc., 54 (2007), pp. 592–604.

[26] C. C. Paige, Computing the generalized singular value decomposition, SIAM J. Sci. and Stat.
Comput., 7 (1986), pp. 1126–1146, https://doi.org/10.1137/0907077.

[27] G. W. Stewart and J.-g. Sun, Matrix Perturbation Theory, Academic Press, 1 ed.,
1990, https://www.elsevier.com/books/matrix-perturbation-theory/stewart/
978-0-08-092613-1.

44

https://doi.org/10.1137/0612029
https://doi.org/10.1137/0612029
https://doi.org/10.1016/s0024-3795(99)00134-2
https://doi.org/10.1137/0613074
https://doi.org/10.1137/s1064827594265095
https://doi.org/10.1137/s1064827594265095
https://doi.org/10.1137/s0895479897321209
https://doi.org/10.1137/s0895479897321209
https://doi.org/10.1137/050639193
https://doi.org/10.1137/05063920x
https://doi.org/10.1023/a:1019112103049
https://doi.org/10.1023/a:1019112103049
https://doi.org/10.1090/s0002-9947-1960-0109825-2
https://doi.org/10.1090/s0002-9947-1960-0109825-2
http://eigen.tuxfamily.org
https://doi.org/10.1137/0111032
https://doi.org/10.1137/0907078
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898718027
https://www.boost.org
https://doi.org/10.1137/0907077
https://www.elsevier.com/books/matrix-perturbation-theory/stewart/978-0-08-092613-1
https://www.elsevier.com/books/matrix-perturbation-theory/stewart/978-0-08-092613-1

[28] H. Zha, The restricted singular value decomposition of matrix triplets, SIAM J. Matrix Anal.
Appl., 12 (1991), pp. 172–194, https://doi.org/10.1137/0612014.

[29] H. Zha, A numerical algorithm for computing the restricted singular value decomposition of
matrix triplets, Linear Algebra Appl., 168 (1992), pp. 1–25, https://doi.org/10.1016/
0024-3795(92)90285-i.

45

https://doi.org/10.1137/0612014
https://doi.org/10.1016/0024-3795(92)90285-i
https://doi.org/10.1016/0024-3795(92)90285-i

A Proof of Lemma 11.

1. Let 𝐴, 𝐵, and 𝐶 be nonsingular; then the proof follows the proof of Proposition 10.

2. If 𝐶 =
[︁ 0 𝑐12

0 𝑐22

]︁
and 𝐵 =

[︁
𝑏11 𝑏12
0 0

]︁
, then 𝑀 =

[︁
0 0
0 0

]︁
. Since 𝑐11 = 𝑏22 = 0, we take 𝑃 = 𝑄 = 𝐽

and compute 𝑈 and 𝑉 are such that (𝑉𝑇𝐶)22 = (𝐵𝑈)11 = 0. Hence

𝑉𝑇𝐶𝑄 =

[︂
𝑐′11 0
0 0

]︂
, 𝑃𝑇𝐴𝑄 =

[︃
𝑎′11 0
𝑎′21 𝑎′22

]︃
, and 𝑃𝑇𝐵𝑈 =

[︂
0 0
0 𝑏′22

]︂
.

3. Let 𝐶 =
[︁ 𝑐11 𝑐12

0 0

]︁
and 𝐵 =

[︁
0 0
0 0

]︁
; then 𝑀 =

[︁
0 0
0 0

]︁
and xLASV2 computes 𝑈 = 𝑉 = 𝐼. Now

1 = 𝑐max > 𝑠max = 0 and the algorithm does not swap the columns of 𝑈 and 𝑉. See below for
the computation of 𝑃 and 𝑄, but note that 𝑃𝑇𝐵𝑈 is zero.

4. Let 𝐶 =

[︂
𝑐11 𝑐12
0 𝑐22

]︂
and 𝐵 =

[︁
0 0
0 0

]︁
; then 𝑀 =

[︁
0 0
0 0

]︁
and xLASV2 computes 𝑈 = 𝑉 = 𝐼. Now

1 = 𝑐max > 𝑠max = 0 and the algorithm does not swap the columns of 𝑈 and 𝑉. See below for
the computation of 𝑃 and 𝑄, but note that 𝑉𝑇𝐶𝑄 is nonsingular lower triangular.

5. Let 𝐶 =
[︁ 𝑐11 𝑐12

0 0

]︁
and 𝐵 =

[︁
𝑏11 𝑏12
0 0

]︁
≠ 0; then 𝑀 = 𝑐11𝑎22𝐵 ≠ 0 and xLASV2 computes

|𝑉 | = 𝐼 and 𝑈 such that (𝐵𝑈)12 = 0. Now 1 = 𝑐max ≥ 𝑠max and the algorithm does not
swap the columns of 𝑈 and 𝑉. It follows that |ℎ12 | + |ℎ22 | = |𝑙12 | + |𝑙22 | = 0 (𝜂ℎ = 𝜂𝑙 = ∞),
𝜂𝑔 = 1, and 1 ≤ 𝜂𝑘 < ∞. Hence, the algorithm computes 𝑄 from 𝐺 = 𝑉𝑇𝐶 = 𝐶 and 𝑃 from
𝐾 = 𝑉𝑇𝐶 adj(𝐴) = 𝐶 adj(𝐴), which results in

𝑉𝑇𝐶𝑄 =

[︂
𝑐11

′ 0
0 0

]︂
, 𝑃𝑇𝐴𝑄 =

[︃
𝑎′11 0
𝑎′21 𝑎′22

]︃
, and 𝑃𝑇𝐵𝑈 =

[︂
𝑏′11 0
𝑏′21 0

]︂
.

The product 𝑃𝑇𝐴𝑄 is lower triangular since, by construction,

0 = | (𝐾𝑃)12 | = |𝒆𝑇1 (𝑉𝑇𝐶𝑄) adj(𝑃𝑇𝐴𝑄)𝒆2 | = |𝑐′11(𝑃𝑇𝐴𝑄)12 |.

Likewise, 𝑏′11 is nonzero because |𝑐′11𝑎
′
22𝑏

′
11 | equals the largest singular value of 𝑀.

6. Let 𝐶 =

[︂
𝑐11 𝑐12
0 𝑐22

]︂
and 𝐵 =

[︁
𝑏11 𝑏12
0 0

]︁
≠ 0; then 𝑀 = 𝑐11𝑎22𝐵 ≠ 0 and the computation of 𝑈, 𝑉,

𝑃, and 𝑄 proceeds as above, except that 𝑉𝑇𝐶𝑄 is nonsingular lower triangular.

7. Let 𝐶 =
[︁ 𝑐11 𝑐12

0 0

]︁
and 𝐵 =

[︂
𝑏11 𝑏12
0 𝑏22

]︂
; then 𝑀 =

[︁ 𝑚11 𝑚12
0 0

]︁
and xLASV2 computes |𝑉 | = 𝐼

and 𝑈 such that (𝑀𝑈)12 = 0. Now 1 = 𝑐max > 𝑠max = |𝑢12 | since 𝑚11 ≠ 0 implies that
|𝑈 | ≠ |𝐽 |, and the algorithm does not swap the columns of 𝑈 and 𝑉. It follows that 𝜂𝑔 = 1
and 1 ≤ 𝜂𝑘, 𝜂ℎ, 𝜂𝑙 < ∞, so that the algorithm always computes 𝑄 from 𝐺 = 𝑉𝑇𝐶 = 𝐶, but may
compute 𝑃 from either 𝐾 = 𝑉𝑇𝐶 adj(𝐴) = 𝐶 adj(𝐴) or 𝐿 = 𝐵𝑈. The result is

𝑉𝑇𝐶𝑄 =

[︂
𝑐′11 0
0 0

]︂
, 𝑃𝑇𝐴𝑄 =

[︃
𝑎′11 0
𝑎′21 𝑎′22

]︃
, and 𝑃𝑇𝐵𝑈 =

[︃
𝑏′11 0
𝑏′21 𝑏′22

]︃
.

If 𝑃 was computed from 𝐾, then 𝑃𝑇𝐴𝑄 is lower triangular for the same reason as in Item 5,
and 𝑃𝑇𝐵𝑈 is lower triangular because 0 = | (𝑉𝑇𝑀𝑈)12 | = |𝑐′11𝑎

′
22(𝑃𝑇𝐵𝑈)12 |. If 𝑃 was computed

from 𝐿, then 𝑃𝑇𝐴𝑄 is lower triangular because 0 = | (𝑉𝑇𝑀𝑈)12 = |𝑐′11𝑏
′
22(𝑃𝑇𝐴𝑄)12 |.

8. Let 𝐶 =
[︁

0 0
0 0

]︁
and 𝐵 =

[︂
0 𝑏12
0 𝑏22

]︂
; then 𝑀 =

[︁
0 0
0 0

]︁
and xLASV2 computes 𝑈 = 𝑉 = 𝐼. Now

1 = 𝑐max > 𝑠max = 0 and the algorithm does not swap the columns of 𝑈 and 𝑉. Computing 𝑃
and 𝑄 is the same as below, but note that 𝑉𝑇𝐶𝑄 is zero.

46

9. Let 𝐶 =
[︁

0 0
0 0

]︁
and 𝐵 =

[︂
𝑏11 𝑏12
0 𝑏22

]︂
; then 𝑀 =

[︁
0 0
0 0

]︁
and xLASV2 computes 𝑈 = 𝑉 = 𝐼. Now

1 = 𝑐max > 𝑠max = 0 and the algorithm does not swap the columns of 𝑈 and 𝑉. Computing 𝑃
and 𝑄 is the same as below, but note that 𝑃𝑇𝐵𝑈 is nonsingular lower triangular.

10. Let 𝐶 =
[︁ 0 𝑐12

0 𝑐22

]︁
≠ 0 and 𝐵 =

[︂
0 𝑏12
0 𝑏22

]︂
; then 𝑀 = 𝑎11𝑏22𝐶 ≠ 0 and xLASV2 computes 𝑉 such

that (𝑉𝑇𝐶)22 = 0 and |𝑈 | = |𝐽 |. Now |𝑣11 | = 𝑐max ≤ 𝑠max = 1, but the 𝑀 is singular and
no swap takes place. It follows that |ℎ12 | + |ℎ22 | = |𝑙12 | + |𝑙22 | = 0 (𝜂ℎ = 𝜂𝑙 = ∞), and
1 ≤ 𝜂𝑔, 𝜂𝑘 < ∞. As a result, 𝑃 and 𝑄 are computed from 𝐺 and 𝐾, respectively. Furthermore
|𝑄 | = |𝐽 |, so that |𝑃 | = |𝐽 | as well. The result is

𝑉𝑇𝐶𝑄 =

[︂
𝑐′11 0
0 0

]︂
, 𝑃𝑇𝐴𝑄 =

[︃
𝑎′11 0
𝑎′21 𝑎′22

]︃
, and 𝑃𝑇𝐵𝑈 =

[︂
𝑏′11 0
𝑏′21 0

]︂
.

11. Let 𝐶 =
[︁ 0 𝑐12

0 𝑐22

]︁
≠ 0 and 𝐵 =

[︂
𝑏11 𝑏12
0 𝑏22

]︂
; then 𝑀 = 𝑎11𝑏22𝐶 ≠ 0 and the computation of 𝑃, 𝑄,

𝑈, and 𝑉 proceeds as above, except that 𝑃𝑇𝐵𝑈 is nonsingular lower triangular.

12. Let 𝐶 =

[︂
𝑐11 𝑐12
0 𝑐22

]︂
and 𝐵 =

[︂
0 𝑏12
0 𝑏22

]︂
; then 𝑀 =

[︂
0 𝑚12
0 𝑚22

]︂
and xLASV2 computes |𝑈 | = |𝐽 | and

𝑉 such that (𝑉𝑇𝑀)22 = (𝑉𝑇𝑀)22 = 0. Now |𝑣11 | = 𝑐max < 𝑠max = 1 since 𝑚22 ≠ 0 implies
that |𝑉 | ≠ 𝐼. However, 𝑀 is singular and no swap takes place. It follows that 1 ≤ 𝜂𝑔, 𝜂𝑘 < ∞
and 𝜂ℎ = 𝜂𝑙 = 1, so that the algorithm always computes 𝑄 from 𝐺 = 𝑉𝑇𝐶, and 𝑃 from
𝐾 = 𝑉𝑇𝐶 adj(𝐴). The result is

𝑉𝑇𝐶𝑄 =

[︃
𝑐′11 0
𝑐′21 𝑐′22

]︃
, 𝑃𝑇𝐴𝑄 =

[︃
𝑎′11 0
𝑎′21 𝑎′22

]︃
, and 𝑃𝑇𝐵𝑈 =

[︂
𝑏′11 0
𝑏′21 0

]︂
.

13. Let 𝐶 =
[︁ 𝑐11 𝑐12

0 0

]︁
and 𝐵 =

[︂
0 𝑏12
0 𝑏22

]︂
; then 𝑀 =

[︁ 0 𝑚12
0 0

]︁
. When 𝑚12 = 0, xLASV2 computes

𝑈 = 𝑉 = 𝐼 and no swaps are necessary. Furthermore, in this case 𝜂𝑔 = 𝜂𝑙 = 1 so that 𝑃 and 𝑄
are computed from 𝐵 and 𝐶, respectively, resulting in

𝑉𝑇𝐶𝑄 =

[︂
𝑐′11 0
0 0

]︂
, 𝑃𝑇𝐴𝑄 =

[︃
𝑎′11 0
𝑎′21 𝑎′22

]︃
, and 𝑃𝑇𝐵𝑈 =

[︂
0 0
0 𝑏′22

]︂
.

Again, 𝑃𝑇𝐴𝑄 is lower triangular because 0 = |𝑉𝑇𝑀𝑈 | = |𝑏′22𝑐
′
11(𝑃𝑇𝐴𝑄)12 | If 𝑚12 ≠ 0, then

xLASV2 computes |𝑈 | = |𝐽 | and |𝑉 | = 𝐼. Now 𝑐max = 𝑠max = 1 and the algorithm does not swap
the columns of 𝑈 and 𝑉. Without the swap, 𝜂𝑔 = 1, |ℎ11 | + |ℎ12 | = 0 (𝜂ℎ = ∞), 1 ≤ 𝜂𝑘 < ∞,
and |𝑙12 | + |𝑙22 | = 0 (𝜂𝑙 = ∞). Hence, the algorithm computes 𝑄 from 𝐺 = 𝑉𝑇𝐶 = 𝐶 and 𝑃

from 𝐾 = 𝑉𝑇𝐶 adj(𝐴) = 𝐶 adj(𝐴), resulting in

𝑉𝑇𝐶𝑄 =

[︂
𝑐′11 0
0 0

]︂
, 𝑃𝑇𝐴𝑄 =

[︃
𝑎′11 0
𝑎′21 𝑎′22

]︃
, and 𝑃𝑇𝐵𝑈 =

[︂
𝑏11

′ 0
𝑏′21 0

]︂
.

See Item 5 to see why 𝑃𝑇𝐴𝑄 is lower triangular, and why 𝑏′11 ≠ 0.

47

	Introduction
	Background and theory
	The preprocessing phase
	The Kogbetliantz phase
	The implicit Kogbetliantz method
	The 2-by-2 RSVD in exact arithmetic
	The 2-by-2 RSVD in floating point arithmetic

	The backward error of the computed A
	The extraction phase
	The postprocessing phase
	Postprocessing in exact arithmetic
	Challenges in floating-point arithmetic

	Nonorthogonal transformations
	Numerical experiments
	Testing 2-by-2 RSVDs
	Testing the implicit Kogbetliantz iteration
	Comparison with other methods

	Conclusions
	Acknowledgments
	Proof of Lemma 11

